您的位置:控制工程论坛网论坛 » 嵌入式系统 » FET工作工作原理

gudongkeji

gudongkeji   |   当前状态:在线

总积分:102  2024年可用积分:0

注册时间: 2012-09-28

最后登录时间: 2013-01-28

空间 发短消息加为好友

FET工作工作原理

gudongkeji  发表于 2012/10/9 16:51:10      844 查看 0 回复  [上一主题]  [下一主题]

手机阅读

  FET通过影响导电沟道的尺寸和形状,控制从源到漏的电子流(或者空穴流)。沟道是由(是否)加在栅极和源极的电压而创造和影响的(为了讨论的简便,这默认体和源极是相连的)。导电沟道是从源极到漏极的电子流。

  在一个n沟道耗尽模式器件,一个负的栅源电压将造成一个耗尽区去拓展宽度,自边界侵占沟道,使沟道变窄。如果耗尽区扩展至完全关闭沟道,源极和漏极之间沟道的电阻将会变得很大,FET就会像开关一样有效的关闭。类似的,一个正的栅源电压将增大沟道尺寸,而使电子更易流过。

  相反的,在一个n沟道提高模式器件中,一个正的栅源电压是制造导电沟道所必需的,因为它不可能在晶体管中自然的存在。正电压吸引了体中的自由移动的电子向栅极运动,形成了导电沟道。但是首先,充足的电子需要被吸引到栅极的附近区域去对抗加在FET中的掺杂离子;这形成了一个没有运动载流子的被称为耗尽区的区域,这种现象被称为FET的阈值电压。更高的栅源电压将会吸引更多的电子通过栅极,则会制造一个从源极到漏极的导电沟道;这个过程叫做反型。

  无论是增强模式还是耗尽模式器件,在漏源电压远小于栅源电压时,改变栅极电压将改变沟道电阻,漏电流将和漏电压(相对于源极的电压)成之比。在这种模式下FET将像一个可变电阻一样运行,被称为线性模式或欧姆模式。[2][3]

  如果漏源电压增长了,由于源漏电势的梯度,它将造成沟道形状上的一个很大的非对称改变。在沟道的漏末端,反型区域的形状变成夹断(pinched-off)。如果漏源电压进一步增长,沟道的夹断点将开始离开漏极,向源极移动。这种FET被称为饱和模式;[4] 一些作者把它称为有源模式,为了更好的和双极晶体管操作区对比。[5][6] 当需要放大的时候一般用饱和模式或者欧姆模式与饱和模式的中间模式。中间模式有时被认为是欧姆或线性模式的一部分,尽管漏电流并不随着漏电压大致线性增长。

  尽管在饱和模式下,栅源电压形成的导电沟道不再和源相连,载流子的流动并没有被禁止。重新考虑n沟道器件,耗尽区存在于p型体中的导电沟道和漏、源区域周围。如果受到漏源电压向漏方向的吸引,组成沟道的电子将通过耗尽区自由的从沟道中移走。耗尽区将没有载流子,而有近似于硅的电阻。任何漏源电压的增长将增加漏极到夹断点的距离,相对于耗尽区增加的电阻和加在漏源上的电压成正比。这种正比的变化造成漏源电流保持相对固定的对漏源电压的独立变化,这和线性模式运行有所不同。尽管在饱和模式下,FET就像一个稳恒电流源而不是电阻,它可以在电压放大器中大多数有效的运用。在这种情况下,栅源电压决定了通过沟道的固定电流的大小。

1楼 0 0 回复