
BASICSof
FPGAs Design

A Supplement to Electronic Design/December 4, 2003 Sponsored by Mentor Graphics Corp.

F
ield-programmable gate arrays
(FPGAs) arrived in 1984 as an
alternative to programmable
logic devices (PLDs) and ASICs.
As their name implies, FPGAs

offer the significant benefit of being readily
programmable. Unlike their forebearers in
the PLD category, FPGAs can (in most cas-
es) be programmed again and again, giving
designers multiple opportunities to tweak their circuits.

There’s no large non-recurring engineering (NRE) cost
associated with FPGAs. In addition, lengthy, nerve-
wracking waits for mask-making operations are
squashed. Often, with FPGA development, logic design
begins to resemble software design due to the many itera-
tions of a given design. Innovative design often happens
with FPGAs as an implementation platform.

But there are some downsides to FPGAs as well. The
economics of FPGAs force designers to balance their rel-
atively high piece-part pricing compared to ASICs with
the absence of high NREs and long development cycles.
They’re also available only in fixed sizes, which matters
when you’re determined to avoid unused silicon area. 

What are FPGAs?
FPGAs fill a gap between discrete logic and the smaller
PLDs on the low end of the complexity scale and costly
custom ASICs on the high end. They consist of an array
of logic blocks that are configured using software. Pro-
grammable I/O blocks surround these logic blocks. Both
are connected by programmable interconnects (Fig. 1).
The programming technology in an FPGA determines the
type of basic logic cell and the interconnect scheme. In
turn, the logic cells and interconnection scheme deter-
mine the design of the input and output circuits as well as

the programming scheme. 
Just a few years ago, the largest FPGA was measured

in tens of thousands of system gates and operated at 40
MHz. Older FPGAs often cost more than $150 for the
most advanced parts at the time. Today, however, FPGAs
offer millions of gates of logic capacity, operate at 300
MHz, can cost less than $10, and offer  integrated func-
tions like processors and memory (Table 1).

FPGAs offer all of the features needed to imple-
ment most complex designs. Clock management
is facilitated by on-chip PLL (phase-locked loop)
or DLL (delay-locked loop) circuitry. Dedicated

memory blocks can be configured as basic single-port
RAMs, ROMs, FIFOs, or CAMs. Data processing, as
embodied in the devices’ logic fabric, varies widely. The
ability to link the FPGA with backplanes, high-speed bus-
es, and memories is afforded by support for various single-
ended and differential I/O standards. Also found on
today’s FPGAs are system-building resources such as high-
speed serial I/Os, arithmetic modules, embedded proces-
sors, and large amounts of memory.

Initially seen as a vehicle for rapid prototyping and
emulation systems, FPGAs have spread into a host of
applications. They were once too simple, and too costly,
for anything but small-volume production. Now, with the
advent of much larger devices and declining per-part costs,

Tradeoffs Abound 
in FPGA Design

Understanding device
types and design flows

is key to getting the 
most out of FPGAs

David Maliniak, Electronic Design Automation Editor

Welcome to Control Engineering China

http://www.cechinamag.com/



Sponsored by Mentor Graphics Inc.

FPGAs are finding their way off the prototyping bench and
into production (Table 2).

Comparing FPGA Architectures
FPGAs must be programmed by users to connect the chip’s
resources in the appropriate manner to implement the
desired functionality. Over the years, various technologies
have emerged to suit different requirements. Some FPGAs
can only be pro-
grammed once. These
devices employ anti-
fuse technology.
Flash-based devices
can be programmed
and reprogrammed
again after debug-
ging. Still others can
be dynamically pro-
grammed thanks to
SRAM-based technol-
ogy. Each has its
advantages and disad-
vantages (Table 3).

Most mod-
ern
FPGAs
are

based on SRAM con-
figuration cells, which
offer the benefit of
unlimited reprogram-
mability. When pow-
ered up, they can be
configured to perform
a given task, such as a

board or system test, and then reprogrammed to perform
their main task. On the flip side, though, SRAM-based
FPGAs must be reconfigured each time their host system is
powered up, and additional external circuitry is required to
do so. Further, because the configuration file used to pro-
gram the FPGA is stored in external memory, security issues
concerning intellectual property emerge.

Antifuse-based FPGAs aren’t in-system programmable,

1.Do concentrate on I/O timing, not
just the register-to-register internal frequency that
the FPGA place-and-route tools report. Frequently,
the hardest challenge in a complete FPGA design is

the I/O timing. Focus on how your signals enter and
leave your FPGA, because that’s where the bottlenecks frequently occur.
2. Do create hierarchy around vendor-specific structures and
instantiations. Give yourself the freedom to migrate from one technology to
another by ensuring that each instantiation of a vendor-specific element is
in a separate hierarchical block. This applies especially to RAMs and clock-
management blocks.
3. Do use IP timing models during synthesis to give the true pic-
ture of your design. By importing EDIF netlists of pre-synthesized blocks,
your synthesis tool can fully understand your timing requirements. Be cau-
tious when using vendor cores that you can bring into your synthesis tool if
they have no timing model.
4. Do design your hierarchical blocks with registered outputs
where possible to avoid having critical paths pass through many levels of hier-
archy. FPGAs exhibit step-functions in logic-limited performance. When hier-
archy is preserved and the critical path passes across a hierarchical boundary,
you may introduce an extra level of logic. When considered along with the
associated routing, this can add significant delay to your critical path.
5. Do enable retiming in your synthesis tool. FPGAs tend to be reg-
ister-rich architectures. When you correctly constrain your design in synthe-
sis, you allow the tool to optimize your design to take advantage of positive
slack timing within the design. Sometimes this can be done after initial place
and route to improve retiming over wireload estimation.

1. Don’t synthesize unless
you’ve fully and correctly constrained
your design. This includes correct
clock domains, I/O timing require-

ments, multicycle paths, and false
paths. If your synthesis tool doesn’t see exactly what you want, it can’t make
decisions to optimize your design accordingly.
2. Don’t try to fix every timing problem in place and route. Place and
route offers little room for fixing timing where a properly constrained 
synthesis tool would.
3. Don’t vainly floor plan at the RTL or block level hoping to
improve place-and-route results. Manual area placement can cause more
problems than it might initially appear to solve. Unless you are an expert in
manual placement and floorplanning, this is best left alone.
4. Don’t string clock buffers together, create multiple clock
trees from the same clock, or use multiple clocks when a simple enable will
do. Clocking schemes in FPGAs can become very complicated now that there
are PLLs, DLLs, and large numbers of clock-distribution networks. Poor
clocking schemes can lead to extended place-and-route times, failure to
meet timing, and even failure to place in some technologies. Simpler
schemes are vastly more desirable. Avoid those gated clocks, too!
5. Don’t forget to simulate your design blocks as well as your
entire design. Discovering and back-tracking an error from the chip’s pins
during on-board testing can be extremely difficult. On-board FPGA testing
can miss important design flaws that are much easier to identify during sim-
ulation; they can be rectified by modifying the FPGA’s programming.

Do’s And Don’ts For The FPGA Designer  

Table 1: KEY RESOURCES AVAILABLE IN THE LARGEST DEVICES FROM MAJOR FPGA VENDORS

Features

Clock 
management

Embedded 
memory blocks

Data processing

Programmable I/Os

Special features

Xilinx Virtex II Pro

DCM
Up to 12

BlockRAM
Up to 10 Mbits

Configurable logic
blocks and 18-bit by
18-bit multipliers

Up to 125,000 logic
cells and 556 multipli-
er blocks

SelectI/O

Embedded PowerPC
405 cores

RocketI/O multi-giga-
bit transceiver

Altera Stratix

PLL
Up to 12

TriMatrix memory
Up to 10 Mbits

Logic elements and
embedded multipli-
ers

Up to 79,000 LEs and
176 embedded mul-
tipliers

Advanced I/O 
support

DSP blocks

High-speed differ-
ential I/O and inter-
face standards sup-
port

Actel Axcelerator

PLL
Up to 8

Embedded RAM
Up to 338 kbits

Logic modules (C-
Cell and R-Cell)
Up to 10,000 

R-Cells and 21,000
C-Cells

Advanced I/O sup-
port

PerPin FIFOs for
bus applications

Lattice ispXPGA

SysCLOCK PLL
Up to 8

SysMEM blocks
Up to 414 kbits

Based on 
programmable
functional unit

Up to 3844 PFUs

SysI/O

SysHSI for high-
speed serial
interface



but rather are pro-
grammed offline
using a device pro-
grammer. Once the

chip is configured, it can’t be altered. 
However, in antifuse technology, device configuration is non-

volatile with no need for external memory. On top of that, it’s
virtually impossible to reverse-engineer their programming.
They often work as replacements for ASICs in  small volumes.

In a sense, flash-based FPGAs fulfill the promise of FPGAs in
that they can be reprogrammed many times. They’re non-
volatile, retaining their configuration even when powered
down. Programming is done either in-system or with a pro-

grammer. In some cases, IP security can be achieved using a multi-
bit key that locks the configuration data after programming. 

But flash-based FPGAs require extra process steps above and
beyond standard CMOS technology, leaving them at least a gen-
eration behind. Moreover, the many pull-up resistors result in
high static power consumption.

FPGAs can also be characterized as having either fine-, medi-
um-, or coarse-grained architectures. Fine-grained architectures
boast a large number of relatively simple logic blocks. Each logic
block usually contains either a two-input logic function or a 4-to-
1 multiplexer and a flip-flop. Blocks can only be used to imple-
ment simple functions. But fine-grained architectures lend them-

selves to execution of functions that benefit from parallelism.

Coarse-grained architectures consist of relatively large log-
ic blocks often containing two or more lookup tables and
two or more flip-flops. In most of these architectures, a
four-input lookup table (think of it as a 16 x 1 ROM)

implements the actual logic. 

The FPGA design flow
After weighing all implementation options, you must consid-
er the design flow. The process of implementing a design on
an FPGA can be broken down into several stages, loosely
definable as design entry or capture, synthesis, and place and
route (Fig. 2). Along the way, the design is simulated at vari-
ous levels of abstraction as in ASIC design. The availability
of sophisticated and coherent tool suites for FPGA design
makes them all the more attractive. 

At one time, design entry was performed in the form of
schematic capture. Most designers have moved over to hard-
ware description languages (HDLs) for design entry. Some
will prefer a mixture of the two techniques. Schematic-based
design-capture tools gave designers a great deal of control
over the physical placement and partitioning of logic on the
device. But it’s becoming less likely that designers will take
that route. Meanwhile, language-based design entry is faster,
but often at the expense of performance or density. 

For many designers, the choice of whether to use
schematic- or HDL-based design entry comes down
to their conception of their design. For those who
think in software or algorithmic-like terms, HDLs are

the better choice. HDLs are well suited for highly complex
designs, especially when the designer has a good handle on
how the logic must be structured. They can also be very useful
for designing smaller functions when you haven’t the time or
inclination to work through the actual hardware implementa-
tion.

Modify design

Done!

No

Yes

No-guess
flow

Achieved
timing?

AchievedAchievedAchieved
timing?timing?timing?

Vendor place and routeVendor place and routeVendor place and routeVendor place and route

A “big picture” look at an FPGA design flow shows the major steps in the process:
design entry, synthesis from RTL to gate level, and physical design. Place and
route is done using the FPGA vendors’ proprietary tools that account for the
devices’ architectures and logic-block structures.

2. The Big Picture

Input/output blocks

Logic blocks

Programmable 
interconnects

Just about all FPGAs include a regular, programmable, and flexible architecture of logic blocks
surrounded by input/output blocks on the perimeter. These functional blocks are linked together
by a hierarchy of highly versatile programmable interconnects.

1. Functional Blocks

Sponsored by Mentor Graphics Corp.

BASICSofDesignFPGAs



On the other
hand, HDLs rep-
resent a level of
abstraction that
can isolate design-
ers from the
details of the
hardware imple-
mentation.
Schematic-based
entry gives designers much more visibility into the hardware. It’s
a better method for those who are hardware-oriented. The
downside of schematic-based entry is that it makes the design
more difficult to modify or port to another FPGA. 

Athird option for design entry, state-machine entry,
works well for designers who can see their logic design
as a
series

of states that the
system steps
through. It shines
when designing
somewhat simple
functions, often in
the area of system
control, that can
be clearly repre-
sented in visual
formats. Tool
support for finite
state-machine
entry is limited,
though. 

Some designers
approach the start of their design from a level of abstraction
higher than HDLs, which is algorithmic design using the C/C++
programming languages. A number of EDA vendors have tool
flows supporting this design style. Generally, algorithmic design
has been thought of as a
tool for architectural
exploration. But increas-
ingly, as tool flows
emerge for C-level syn-
thesis, it’s being accepted
as a first step on the road
to hardware implemen-
tation.

After design
entry, the
design is sim-
ulated at the

register-transfer level
(RTL). This is the first of
several simulation stages,
because the design must
be simulated at successive
levels of abstraction as it
moves down the chain
toward physical imple-
mentation on the FPGA
itself. RTL simulation
offers the highest per-

formance in
terms of speed.
As a result,
designers can
perform many
simulation runs
in an effort to
refine the logic.
At this stage,
FPGA develop-

ment isn’t unlike software development. Signals and variables are
observed, procedures and functions traced, and breakpoints set.
The good news is that it’s a very fast simulation. But because the
design hasn’t yet been synthesized to gate level, properties such as
timing and resource usage are still unknowns. 

The next step following RTL simulation is to convert the RTL
representation
of the design
into a bit-stream
file that can be
loaded onto the
FPGA. The
interim step is
FPGA synthesis,
which translates
the VHDL or
Verilog code
into a device
netlist format
that can be
understood by a
bit-stream con-
verter. 

The synthesis
process can be broken down into three steps. First, the HDL
code is converted into device netlist format. Then the resulting
file is converted into a hexadecimal bit-stream file, or .bit file.
This step is necessary to change the list of required devices and

interconnects into hexa-
decimal bits to down-
load to the FPGA. Last-
ly, the .bit file is
downloaded to the
physical FPGA. This
final step completes the
FPGA synthesis proce-
dure by programming
the design onto the
physical FPGA.

It’s important to fully
constrain designs
before synthesis (Fig.
3). A constraint file

is an input to the synthe-
sis process just as the
RTL code itself. Con-
straints can be applied
globally or to specific
portions of the design.
The synthesis engine uses
these constraints to opti-
mize the netlist. However,

Table 2: FPGA USAGE

Time-to-market

Performance

Volume

Emulation: 3%
Fairly high; fast
compile times
Not stringent
Very low per
application

Prototyping: 30%
Fairly high; fast
compile times
Not stringent

Low per application

Preproduction: 30%
Fairly high; fast com-
pile times
Very critical

Moderately high per
application

Production: 37%
Fairly high; fast
compile times
Very critical

High per applica-
tion

Table 3: ADVANTAGES/DISADVANTAGES OF VARIOUS FPGA TECHNOLOGIES

Feature
Reprogrammable?
Reprogramming speed
(including erasure)
Volatile?
External configuration file?
Good for prototyping?
Instant-on?
IP security
Size of configuration cell
Power consumption
Radiation hardness?

SRAM
Yes (in-system)
Fast

Yes
Yes
Yes
No
Poor
Large (six transistors)
High
No

Antifuse
No
Not
applicable
No
No
No
Yes
Very good
Very small
Low
Yes

Flash
Yes (in-system or offline)
3X SRAM

No (but can be if required)
No
Yes
Yes
Very good
Small (two transistors)
Medium
No

HDL files

Constraints

Placement

Routing

FPGA/PLD

Language input (VHDL/Verilog)

Initial optimization

Timing analysis

Timing optimization

De
sig

n
Im

ple
me

ntVHDL/IP RTL

RTLVerilog/IP

The implementation flow for FPGAs begins with synthesis of the HDL design description into a gate-level netlist.
Accounting for user-defined design constraints on area, power, and speed, the tool performs various optimiza-
tions before creating the netlist that’s passed on to place-and-route tools. 

3. Go With The Flow



it’s equally important to not over-constrain the design, which
will generally result in less-than-optimal results from the next
step in the implementation process—physical device place-
ment—and interconnect routing. Synthesis constraints soon
become place-and-route constraints. 

This traditional flow will work, but it can lead to numer-
ous iterations before achieving timing closure. Some EDA
vendors have incorporated more modern physical synthesis
techniques, which automate device re-timing by moving
lookup tables (LUTs) across registers to balance out timing
slack. Physical synthesis also anticipates place and route to
leverage delay information. 

Following synthesis, device implementation begins.
After netlist synthesis, the design is automatically
converted into the format supported internally by
the FPGA vendor’s place-and-route tools. Design-

rule checking and optimization is performed on the incoming
netlist and the software partitions the design onto the avail-
able logic resources. Good partitioning is required to achieve
high routing completion and high performance.

Increasingly, FPGA designers are turning to floorplanning
after synthesis and design partitioning. FPGA floorplanners
work from the netlist hierarchy as defined by the RTL cod-
ing. Floorplanning can help if area is tight. When
possible, it’s a good idea to place critical logic in
separate blocks. 

After partitioning and floorplanning, the
placement tool tries to place the logic blocks to
achieve efficient routing. The tool monitors rout-
ing length and track congestion while placing the
blocks. It may also track the absolute path delays
to meet the user’s timing constraints. Overall, the
process mimics PCB place and route. 

Functional simulation is performed after syn-
thesis and before physical implementation. This
step ensures correct logic functionality. After
implementation, there’s a final verification step
with full timing information. After placement
and routing, the logic and routing delays are
back-annotated to the gate-level netlist for this
final simulation. At this point, simulation is a
much longer process, because timing is also a fac-
tor (Fig. 4). Often, designers substitute static tim-
ing analysis for timing simulation. Static timing
analysis calculates the timing of combinational
paths between registers and compares it against
the designer’s timing constraints. 

Once the design is successfully verified
and found to meet timing, the final step
is to actually program the FPGA itself. At the com-
pletion of placement and routing, a binary pro-

gramming file is created. It’s used to configure the device. No
matter what the device’s underlying technology, the FPGA
interconnect fabric has cells that configure it to connect to
the inputs and outputs of the logic blocks. In turn, the cells
configure those logic blocks to each other. Most programma-
ble-logic technologies, including the PROMs for SRAM-
based FPGAs, require some sort of a device programmer.
Devices can also be programmed through their configuration
ports using a set of dedicated pins. 

Modern FPGAs also incorporate a JTAG port that,
happily, can be used for more than boundary-scan
testing. The JTAG port can be connected to the
device’s internal SRAM configuration-cell shift reg-

ister, which in turn can be instructed to connect to the chip’s
JTAG scan chain. 

If you’ve gotten this far with your design, chances are you
have a finished FPGA. There’s one more step to the process,
however, which is to attach the device to a printed-circuit board
in a system. The appearance of 10-Gbit/s serial transmitters, or
I/Os, on the chip, coupled with packages containing as many as
1500 pins, makes the interface between the FPGA and its intend-
ed system board a very sticky issue. All too often, an FPGA is
soldered to a pc board and it doesn’t function as expected or,
worse, it doesn’t function at all. That can be the result of errors
caused by manual placement of all those pins, not to mention
the board-level timing issues created by a complex FPGA. 

More than ever, designers must strongly consider an integrat-
ed flow that takes them from conception of the FPGA through
board design. Such flows maintain complete connectivity
between the system-level design and the FPGA; they also do so
between design iterations. Not only do today’s integrated FPGA-
to-board flows create the schematic connectivity needed for veri-

fication and layout of the board, but they also document which
signal connections are made to which device pins and how these
map to the original board-level bus structures. 

Integrated flows for FPGAs make sense in general, consider-
ing that FPGA vendors will continue to introduce more com-
plex, powerful, and economical devices over time. An inte-
grated third-party flow makes it easier to re-target a design

to different technologies from different vendors as conditions
warrant. 

FPGA
RTL design

Testbench

HDL simulator

Synthesis

FPGA gate
library

Place and route

FPGA simulation occurs at various stages of the design process: after RTL design, after synthesis, and once again
after implementation. The latter is a final gate-level check, accounting for actual logic and interconnect delays,
of logic functionality. 

4. Simulation Stages

BASICSofDesignFPGAs




