zhuang bei lun tan

Proteus与Keil 整合构建单片机虚拟实验室

刘映群

摘要:单片机教学包括理论与实践教学,而实践实训教学所占比例较多,硬件投入大。在实践实训的教学中,需要大量的实验仪器和设备。一般的学校或个人没有较多的经费。本文提出了一种新的思路,较为全面地阐述采用软件仿真实验的方法。

<u>引言</u>

单片机的课堂教学及实验中存在诸多问题如:

- 1.单片机课堂教学以往多以理论教学为主,实验教学也多是进行验证实验。但单片机是一门实践性很强的课程。教学中需要很多硬件设备,如电脑、仿真机、实验电路、编程器等。一般理论课堂难以辅助硬件进行教学,即便演示,效果也不好,一般单片机实验箱也只是起验证实验的作用。
- 2.学生实验时也存在着不少问题,单片机实验室由于存在着场地和时间等问题,学生除了上课外,平时难得有机会实践。个人配备单片机实验开发系统,因成本较高,很多学生无法承受。同时一般单片机实验箱由于是成品,学生很难参与到其中的细节设计中去,学生动手能力很难得到训练与提高。
- 3.实验设备不足,落后,单片机实验室建立成本高,一般学校很少有学生人手一套实验开发系统进行单片机实验及开发。就算有,由于技术的不断更新,设备的不断老化。实验仪器也会很快落后。要解决此问题需要不断的重建单片机实验室。务必带来资金耗费严重等问题。

为此,作者利用Proteus与Keil整合构建单片机虚拟实验室,为解决这一问题提供了一些思路。

Proteus与Keil介绍

1.Proteus

Proteus是一种低投资的电子设计自动化软件,

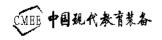
作者单位:岭南职业技术学院信息工程学院, 广东岭南,510663 提供Schematic Drawing, SPICE仿真与PCB设计功能,这一点proteus与 multisim比较类似,只不过它可以仿真单片机和周边设备,可以仿真51系列、AVR,PIC等常用的MCU,与keil和MPLAB不同的是它还提供了周边设备的仿真,只要给出电路图就可以仿真,例如373,led,示波器,Proteus提供了大量的元件库,有RAM,ROM,键盘,马达,LED,LCD,AD/DA,部分SPI器件,部分IIC器件,…编译方面支持Keil和MPLAB,里面有大量的例子参考.

(1)Proteus可提供的仿真元件资源

Proteus软件提供了可仿真数字和模拟、交流和 直流等数千种元器件和多达30多个元件库。

(2)Proteus可提供的仿真仪表资源

虚拟仪器仪表的数量、类型和质量,是衡量仿 真软件实验室是否合格的一个关键因素。在Proteus 软件中,理论上同一种仪器可以在一个电路中随意 的调用。


除了现实存在的仪器外,Proteus还提供了一个 图形显示功能,可以将线路上变化的信号,以图形 的方式实时地显示出来,其作用与示波器相似但功 能更多。

这些虚拟仪器仪表具有理想的参数指标,例如 极高的输入阻抗、极低的输出阻抗。这些都尽可能 减少了仪器对测量结果的影响。

(3) Proteus可提供的调试手段

Proteus提供了比较丰富的测试信号用于电路的 测试。这些测试信号包括模拟信号和数字信号。

2.Keil是德国开发的一个51单片机开发软件平台,最开始只是一个支持C语言和汇编语言的编译器

单片机教学·装备论坛

zhuang bei lun tan

软件。后来随着开发人员的不断努力以及版本的不 断升级,使它已经成为了一个重要的单片机开发平 台,不过KEIL的界面并不是非常复杂,操作也不是 非常困难,很多工程师的开发的优秀程序都是在 KEIL的平台上编写出来的。可以说它是一个比较重 要的软件,熟悉他的人很多很多,用户群极为庞 大,要远远超过伟福等厂家软件用户群,操作有不 懂的地方只要找相关的书看看,到相关的单片机技 术论坛问问,很快就可以掌握它的基本使用了。

- (1) Keil的 µ Vision2可以进行纯粹的软件仿 真(仿真软件程序,不接硬件电路);也可以利用硬 件仿真器, 搭接上单片机硬件系统, 在仿真器中载 入项目程序后进行实时仿真;还可以使用 µ Vision2 的内嵌模块Keil Monitor-51, 在不需要额外的硬件 仿真器的条件下,搭接单片机硬件系统对项目程序 进行实时仿真。
- (2) uVision2调试器具备所有常规源极调试, 符号调试特性以及历史跟踪,代码覆盖,复杂断点 等功能。DDE界面和shift语言支持自动程序测试。

虚拟实验的构建

单片机的理论教学和实验中,内容一般包括了 四方面,即单片机系统资源;硬件电路的设计、组 装、调试;应用软件的编制、调试;总调,即应用 软件的链接调试,程序固化,软、硬件结合的应用 系统。因此教师在进行教学时,应该充分考虑课程 的特点并作合理的模块划分,在每次实验课程前作 适当的准备工作,以使教学任务能集中和突出。

1. 系统资源的实验教学

任何一种单片机均提供了一定的系统资源。对 于51系列单片机来讲,其所提供的资源是以寄存器 和存储器的方式体现出来的。对于寄存器内容的查 看,可以采用多种可以模拟仿真51单片机的软件来 实现。对于Keil软件来讲,C51编译器可以实现对51 系列单片机所有资源的操作。

2. 硬件电路的设计、组装、调试

硬件电路的设计包含两部分内容:一是系统扩 展,即单片机自身的功能单元如ROM,RAM,I/O口, 定时器/计数器等容量不能满足应用系统的需要时,

必须在片外进行扩展,选择适当的芯片,设计相应 的电路;二是系统配置,即按照系统的要求配置外 围设备,如键盘、显示器、打印机、A/D转换器、D/ A转换器等,要设计合适的接口电路。

很多常用的硬件电路的设计可在Proteus软件中 实现,学生通过Proteus软件的使用,不当可以实现 教材上的大部分实验。而且可以学到硬件电路设计 的方法。

3.应用软件的编制、调试;

使用Keil 软件工具时,项目开发流程和其它软 件开发项目的流程极其相似。

- (1)创建一个项目,从器件库中选择目标器件, 配置工具设置。
 - (2)用C语言或汇编语言创建源程序。
 - (3)用项目管理器生成应用。
 - (4)修改源程序中的错误。
 - (5)测试,连接应用。

学生通过使用Keil 软件工具编制、调试应用软 件,可以学到单片机各种指令,也可以学到单片机 软件开发的步骤、方法和技巧。

4. 总调,即应用软件的链接调试,程序固 化,软、硬件结合的应用系统

软硬件联合仿真系统由一个硬件执行环境和一 个软件执行环境组成,通常软件环境和硬件环境都 有自己的除错和控制界面, Keil与Proteus的整合调 试可以实现系统的总调,在该系统中,Keil作为软 件调试界面, Proteus作为硬件仿真和调试界面,下 面说一下如何在keil中调用proteus进行MCU外围器 件的仿真。

- (1)安装keil 与 proteus。
- (2)把安装proteus\ MODELS目录下 VDM51.dll 文件复制到Keil安装目录的\C51\BIN目录中。
- (3)修改keil安装目录下 Tools.ini文件,在 C51字段加入TDRV5=BIN\VDM51.DLL("Proteus VSM Monitor-51 Driver"),保存。

注意:不一定要用TDRV5,根据原来字段选用 一个不重复的数值就可以了。引号内的名字随意。

- (4)打开proteus,画出相应电路,在proteus的 debug菜单中选中use remote debug monitor。
 - (5)在keil中编写MCU的程序。

单片机教学:装备论坛

zhuang bei lun tan

(6)进入KEIL的project菜单option for target'工程名'。在DEBUG选项中右栏上部的下拉菜单选中 Proteus VSM Monitor-51 Driver。

在进入seting,如果同一台机IP 名为127.0.0.1,如不是同一台机则填另一台的IP地址。端口号一定为8000。

注意:可以在一台机器上运行keil,另一台中运行proteus进行远程仿真。

(7)在keil中进行debug吧,同时在proteus中查看直观的结果(如LCD显示.....)。

这样就可以像使用仿真器一样调试程序。

<u>教学实例</u>

该实验为单片机控制液晶显示器的仿真电路。

1. 硬件电路

电路如图1所示。

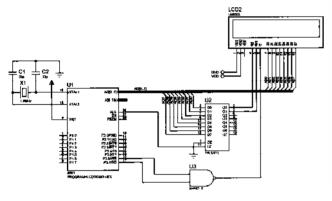


图1 液晶显示控制电路

2. 软件程序

略:

在Proteus里打开设计好的电路。在Keil建立项目并编译程序,编译通过后,按Ctrl+F5或者点击Keil的调试按钮,进入模拟调试环境,此时Proteus的模拟调试工具条的运行按钮由黑色变为绿色了。按F5或者点击工具栏的按钮,全速运行,这个时候Proteus的开始运行,你会发现在模拟调试工具条的右边有程序运行的时间提示。在两个软件结合调试的时候,把Keil的界面调的小一点,让它在Proteus界面的上面,露出Proteus界面的LCD,这样我们在Keil里调试,马上在Proteus就看到结果了。笔者调试的情形如图2所示。

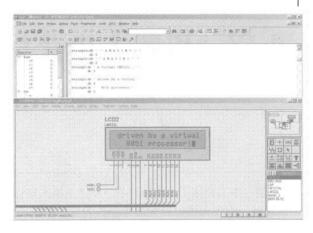
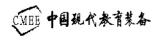


图2 液晶显示控制电路调试的情形


结_语

利用Proteus与Keil整合进行实验,具有比较明显的优势,当然其存在的缺点也是有的。利用仿真实验可以做全部的软件实验和极大多数的硬件系统,虚拟仿真实验室,因极少硬件投入、所以经济优势明显,不仅可以弥补实验仪器和元器件缺乏带来的不足,而且排除了原材料消耗和仪器损坏等因素,可以帮助学生更快、更好地掌握课堂讲述的内容,加深对概念、原理的理解,弥补课堂理论教学的不足。学生通过仿真实验,可以熟悉单片机系统的开发方法,这对进一步培养学生的综合分析能力、排除故障能力和开发、创新能力具有重要意义。

Proteus大量的范例,可供学生参考处理,实验过程、实验步骤的演示可以在实验室以外的地方完成,实现了跨越了传统教学地域传授知识的局限,还能解决由于学生不懂、不理解,老师重复讲解、演示和重复分析的弊端,使老师有更多的时间进行课堂管理,有更多的时间观察学生的反应,检查课堂教学结果,再作相应的教学调整,增加必要的教学过程,施加必要的教学手段。从而更出色地完成教学任务。

参考文献

- [1] 马正强. 单片机虚拟实验室的建立. 单片机与嵌入式系统应用. 2005,3
- [2] 李朝青. 单片机原理及接口技术(简明修订版) 北京:北京航空航天大学出版社,1999

