ATV58 变频器在烧结配料 MB+ 网中的控制

孙宪伟,常青海,田林清,杨国祥 (安钢烧结厂)

[摘要] 介绍了ATV58 在烧结配料 MB+ 网中的硬件构成、组态,软件控制及自动控制的方法。 关键词 烧结配料 变频器 称重模块 QUANTUM PLC MB+

0 引言

安钢烧结厂 360 m² 烧结机配料自动控制系统于2005 年6 月投运。它采用 PLC 控制技术,其核心控制是"配料秤-称重模块-PLC-变频器"形成的闭环控制,通过变频器调节圆盘给料机、螺旋给料机来调节料流量,以达到设定的配比,完成配料功能。变频器和 PLC 的通信方式是影响配料精度和稳定性的制约环节。在配料自动控制系统中采用了数字通信技术—MB+网,实现了变频器的网络控制,取得了良好效果。

1 自动控制系统的构成

自动控制系统分为硬件组态和软件控制。

1.1 系统的硬件构成

该系统由 QUANTUM 140 系列 PLC、PREMIUM PLC 加称重模块 TSP Y101、ATV58 变频器、变频器 MB+ 通信卡 VW3-A58302 组成。 QUANTUM PLC 和 PREMIUM PLC 用以太网连接; 变频器通过通信卡和 QUANTUM PLC 用 MB+ 网连接。

1.2 系统的硬件组态

首先把通信卡上的地址拨码开关设为用户所需要的地址(如11),然后在CONCEPT中用PEER COP

收稿日期: 2006-09-15

作者简介: 孙宪伟, 电气助理工程师, 从事电气传动及自动控制工作,

动控制工作;

常青海, 电气工程师, 从事电气传动及自动控制工作; 田林清, 电气助理工程师, 从事电气传动及自动控制工作; 杨国祥, 电气工程师, 从事电气传动及自动控制工作。 对 MB+ 网上的变频器进地址设定,以及"写入"和"读出"控制字的设定。具体如图 1、图 2。

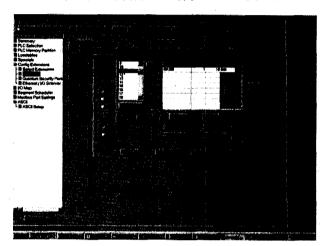


图 1 通信卡上的地址拨码开关设定

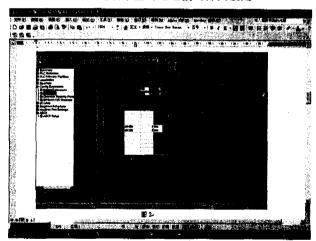


图 2 变频器地址的设定

图 1 中 1 1 是变频器的通信地址; 401200 为从变频器读入字的起始地址; 10 为读入字的个数。

验,设备工作正常,都没有再出现上述类似故障。 这个故障之所以能够产生,根本原因是因为包 装机厂家设计电器控制原理图时出现的错误,违背 了"用最简单的控制过程完成最大限度的控制目 的"的原则,才造成烧毁一台变频器。但是,如果 用户在使用时注意检查、观察,操作人员发现问题 及时、详细、认真地汇报处理,维修技术人员认真 地对故障原因进行分析和检查,也能够避免事故扩 大化。

参考文献

[1] 焦红现,杨万华,郜振国.施耐德 ATV68 型变频器在控制电机速度中的应用.重庆:电工技术,2005(3):72~73

图 2 中 401300 为从变频器写入字的起始地址; 2 为写入字的个数。

最后在变频器的通信菜单上设定"写入"和"读 出"的控制的字数和网络数等参数。

ATV58 内部常用变量见表 1。

表 1 ATV58 内部常用变量

写入操作		读入操作	
地址代码	说明	地址代码	说明
400 CMD	命令寄存器	450 FRH	给定频率
401 LFR	在线给定频率	451 RFR	电机输出频率
252 ACC	加速度	454 ULN	线电压
253 DEC	减速度	453 LFT	上次故障

1.3 系统软件控制

1.3.1 流量恒定的控制原理

要确保烧结配料成分的稳定, 圆盘给料机和螺 旋的流量控制是关键。在流量的采集上配料系统使 用了称重模块进行精确测量。当输送机输送物料 时,测量皮带秤上每单位长度的载荷值 q(kg/m) 与 皮带在同一时刻的运行速度 V(m/s)相乘, 所得结果 即物料的瞬时流量 $q \cdot v(kg/s)$ 。只要保证 $q(t) \cdot V(t)$ 的 乘积不变, 就可以保证物料流量的恒定。即随皮带 上物料重量的变化控制皮带运行速度做出相应的调 整,就可以保证物料流量的恒定。

在本系统中皮带秤的速度是恒定不可调的,所 以要控制流量的恒定只能调节皮带上物料重量, 而重量的改变又只能通过改变变频器的频率, 以 求改变圆盘给料机和螺旋下料的速度。控制原理 如图3。

1.3.2 变频器的网络控制

每次在变频器上电前或故障后, 首先进行初始 化、由PLC使用PEER COP向变频器"写人"命 令,包括启停操作、电机正反转控制、故障复位等 进行复位;用GLOBAL向变频器"读入"状态,包 括电流、电压、转速等信息, 了解变频器及电机的 运行状态。

1.3.3 给料 PID 控制

圆盘给料机 PID 调节主要通过变频器调节圆盘 转速,以改变下料量。常规的闭环控制方法是无法 达到稳度、精度要求的。因此采取大滞后闭环控制。 (1) 为避免系统超调,确定系统响应时间 t 时应大 于圆盘机械响应时间 t, 与物料从下料口到称量段时一 间 t_s之和; (2) 在 PID 运算输出之前加一限定值, 当 输出量变化值超过该限定值时,用限定值代替PID

运算输出, 以克服输出量变化影响圆盘转动的稳定 性; (3) 实现无扰动投入, 先确定好圆盘转速初值, 圆盘启动时经3~5个周期的运行, 当瞬时流量在 PID 调节范围内输出时, 自动切换到 PID 调节; (4) 当工况不稳时,如瞬时流量波动较大且无规律,可 采用累计调节方式,即取单位时间(取5s)的累计流 量作为 PV 值与设定量 SP 进行比较调节。其程序控 制框图如图 4。

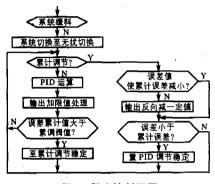


图 4 程序控制框图

2 系统特点

- (1) 采用称重模块, 重量更加准确;
- (2) 采用以太网、MB+ 网传输数据, 反映时间 更快、抗干扰更强、可靠性更高;
- (3) 变频器加以闭环自动控制节电效果显著、 流量控制更稳定。

以工艺中实际流量为给定值实施流量PID闭环 控制不仅流量控制稳定,而且节能效果显著。当所 需流量 Q, 大于流入流量 Q2 时, 则变频器提高转速, 增加流入流量;当Q,=Q,时,则变频器恒速以保持流 量; 当 Q, < Q, 时,则变频器减速减少流入流量。这样 变频器频率的变化维持流量关系的供求平衡,并且 变频器自动跟踪这个流量负荷下最小运行电流,保 持最低转速, 功耗小。

3 结束语

该系统自2005年6月投产以来,运行一直很平 稳,没有出现过事故,故障率低,可靠性高,完全 满足了大型烧结机配料精度、自动化的要求,节能 效果明显。

参考文献

- [1] Modicon Tsx Quantum.硬件手册
- [2] Modicon Concept V2.6. 编程软件手册
- [3] 廖常初.PLC 编程及应用.北京机械工业出版社,2002
- [4] 陈伯时,自动控制系统,中央广播电视大学出版社
- [5] 张天国.高压变频器中移相变压器的继电保护整定.重庆:电 工技术,2005(12):17`