基于 DEM 的机载 LIDAR 航线设计技术研究

王东亮,万幼川,徐景中,赖旭东 武汉大学遥感信息工程学院,武汉 (430079)

E-mail: wddLLL@163.com

摘 要:现有的航线设计软件,如国外的ASCOT、CCNS4等,由于设计较早,没有充分考虑我国的航空摄影标准和LIDAR这种新型传感器。针对这一现状,本文参照我国航空摄影标准中有关相机的部分,深入研究了基于 DEM 的机载 LIDAR 飞行路线设计中的关键技术,并基于 VC++实现了以上算法。实践表明,这样能够直观地设计出更为合理、准确的飞行路线,还能少飞行一些航线,从而减少一定成本。

关键词: 航空摄影; DEM; LIDAR 航线设计; 重叠度 中图分类号: 420.20

1. 引言

航线设计是进行,根据面积大小,把测区划分为一定数量的分区,然后分别完成每个分 区、每条航线设计。航线设计的质量好坏直接影响数据采集的效率以及质量。目前,航摄飞 行路线设计软件主要有国外的ASCOT、CCNS4等[1],但这些软件设计较早,没有考虑LIDAR 这种新型传感器和我国的航空摄影标准。最近,国内《基于 DEM 的航空摄影技术设计方法》 和《基于 DEM 的地理坐标航空影像或其他遥感数据采集的前提工作之一,它主要是依据航 空摄影任务书的内容和要求系下航空摄影技术设计》等文章已经初步开展了关于相机的航线 设计方法研究,并取得了一定成果,但关于 LIDAR 传感器的航线设计还是一片空白。

为此,研发设计基于 DEM 的 LIDAR 传感器飞行路线设计软件,来辅助我国航空摄影测量发展已迫在眉睫。

2. 基于 DEM 的 LIDAR 飞行路线设计

2.1 地形起伏对航带重叠度的影响

在拍摄过程中,由于实际飞行航高与设计航高有差异,传感器可能倾斜,地面亦有起伏, 这些因素都会影响到航带重叠度。随着航空技术的不断提高,前两者已不再是主要问题,但 地形起伏引起的重叠度变化却不容忽视[2,3]。

如图 1 所示, S_1 和 S_2 为同一条航线上两 个相邻的摄影站, By为摄影基线, \triangle h 为地面 比测区平均基准面高出的距离, P_y 为航带在测 区平均基准面上的旁向重叠长度, P_y '为地面 上的实际旁向重叠长度, L_y 为航带在平均基准 面上的长度, L_y '为航带在地面上的实际长度, P_y '为地形起伏引起的重叠长度误差。设 q_y 为

图1 地形起伏对重叠度的影响

测区平均基准面上的旁向重叠度, qy'为实际旁向重叠度。

 $在 \bigtriangleup S_1 AC$ 和 $\bigtriangleup S_1 BC$ 中,由 三角形相似性得:

 $\dot{L_{y}}/L_{y} = (H - \Delta h)/H = (p_{y}' + \Delta p_{y}')/p_{y}$, 于是 $p_{y}/L_{y} = (p_{y}' + \Delta p_{y}')/L_{y}'$ 。那么,由于 地形起伏所引起的重叠度误差^[4]:

可见,在地形起伏较大的山区进行航空摄影时,重叠度计算必须加入由于地形起伏引起 重叠度误差的改正。

2.2 参考相机, 预定 LIDAR 飞行标准

由于我国最近几年刚引进 LIDAR 传感器,相关标准尚未制定,这里参照国家测绘标准 中有关相机的规定,来预定一些 LIDAR 传感器标准。国家标准中相机摄影的规定[5]:1) 关于旁向重叠度。一般应为 30%~35%,个别最小不得小于 13%;2)关于航高保持。摄影分 区内实际航高与设计航高之差不得大于 50m;当相对航高大于 1000m 时,分区内实际航高 与设计航高之差不得大于设计航高的 5%;3)关于航线弯曲度。航线弯曲度影响像片的旁 向重叠度,一般航线弯曲度不得大于 3%。根据以上标准,结合 LIDAR 传感器特殊的线扫 描方式,这里暂定:1) 航带的旁向重叠度一般也应为 20%~25%。其中,最高点重叠度 qy' 不得小于 15%,也不得大于 20%;2) 航高、航线弯曲度遵守相机有关规定。

2.3 飞行路线设计

为了达到要求的重叠度,可通过弯曲航线、增减航高和基线来实现。但为了保证数据的 后期处理方便,这里不升降航高,也不弯曲航线,而优先考虑调整基线来达到规定的重叠度。 调整时,拿相邻两条航带重叠区内的最高点,来判断实际重叠度的满足情况,这是因为若根 据最低点的来判断的话,可能最高点还不能满足要求。

2

中国科技论文在线

2.3.1 已知某条航线敷设下一条航线

前提条件:1)系统的飞行航高恒定;2) 航线不弯曲,是一条直线。

如果测区是规则的矩形,且飞行方向是 沿矩形的长或宽的方向,这样每条航线的长 度都是相同的,那么敷设航线的具体步骤如 下(模型见图 2):①设第 i 条航线起点坐标 (X[i,0],Y[i,0]),终点坐标(X[i,1],Y[i,1])。 则根据 DEM,求出该航线的覆盖区域。②在 平 均 高 程 上 , 求 旁 向 基 线 $B_y = (1-q_y) \times L_y$,进而求出第 i+1 条航线 的起止点;③参照步骤 1 求出第 i+1 条航带 覆盖区域;④求出第 i 条和第 i+1 条航带的 重叠区域,并从 DEM 数据中找出重叠范围 内最高点坐标(X,Y,Z_{max});⑤参见式(3),

图 2 已知某条航线敷设下一条航线

计算此像片覆盖范围内最高点的实际航向重叠度 q'_{y} ; ⑥参见 2.2, 依据最高点重叠度的要求, 求出基线改正数, 然后重新计算第 i+1 条航线的起止点。(i) 如果 $q_{y \min} \ll q'_{y} \ll q_{y}$, 则 跳出循环; (ii) 如果 $q'_{y} < q_{y \min}$, 说明重叠度不够,这时需要缩短基线: $B_{y\text{Reduce}} = (q_{y \min} - q'_{y}) \cdot L_{y} \cdot (H_{\text{max}} - Z_{\text{max}}) / H_{\text{max}})$,(iii) 如果 $q'_{y} > q_{y}$,说明重叠度过多, 需延长基线, $B_{y\text{Add}} = (q'_{y} - q_{y}) \cdot L_{y} \cdot (H_{\text{max}} - Z_{\text{max}}) / H_{\text{max}})$ 。⑦循环继续,直到跳出循环 或迭代次数用完为止,返回 第 i+1 条航线的起止点,结束。这里可以把迭代次数设为 6, 事实上,一般情况 1~2 次就足够了。

3

中国科技论文在线

起止点坐标需要单独求解。

2.3.2 求出起止航线的起止点坐标

当测区不是规则矩形,或不是沿矩形长或宽的方向飞行,或旁向超飞比例

 $PxSafeFactor_y > 100%, 这时起止航线的$

如图 3, Px 为旁向超飞长度, Hx 航向超 飞长度, L 为测区最小外包矩形(红线)的 长度, W 为测区最小外包矩形的宽度, 系统 飞行方向的角度(与水平方向的夹角)为α。 以下, HxSafeFactor, 为航向超飞比例,

图3 系统飞行示意图

PxSafeFactor, 为旁向超飞比例。

2.3.2.1 求第一条航线的起止点坐标

①设最小外包矩形沿航向方向的右边框线为 l_{\pm} ,起点为(x2,y2),终点为(x3,y3),把 l_{\pm} 沿 $\alpha - \pi/2$ 方向移动(0.5 - PxSafeFactor_y)× L_y ; ②参见 2.3.1 中的步骤 1,计算第一条 航线 l_0 的覆盖区域 f_0 ; ③求 f_0 与测区的重叠区域,如果有重叠区域,则进入步骤 4;如果 没有则进入步骤 5;④求重叠区域的最小外包矩形,求出最小外包矩形的右边框线 l_{\pm} 到最 初的第一条航线 l_0 的距离 a',把 l_{\pm} 沿 $\alpha - \pi/2$ 方向移动 a',即得到第一条航线的新值 l_0 ', 结束。⑤参照 2.3.1,求出下一条航线,把下一条航带赋给 l_0 ,继续步骤 2。

2.3.2.2 求超出测区的最后几条航线的起止点坐标

当 PxSafeFactor_y > 100% 时,计算到最后一条或几条航线会与测区没有重叠区域,因此将无法通过 2.3.1 确定航线。这时可按以下步骤求剩余几条航线:①参照 2.3.1,根据第 i 条航线,求第 i+1 条航线;②计算第 i+1 条航带覆盖区域 f_i ;③求 f_{i+1} 与测区的重叠区域, 如果没有重叠区则进入步骤 4,反之第 i+1 条航线计算完毕,继续求下一条航线;④求出第 i+1 条航线 l_i 与第 i 条航线 l_{i-1} 间的距离 a (单位 m),然后把 l_{i-1} 沿 $\alpha + \pi/2$ 方向移动 a,即 得到第一条航线的新值 l_i' ;⑤设第 i+1 条航线 l_i 到 l_{f_i} 的距离为 yMoveTotal。如果 (yMoveTotal + $L_y/2$) < (L + PxSafeFactor_y × L_y),那么继续步骤 1。反之结束。

3 实验与分析

为了验证系统的结果科学合理性,特从SRTM^[6](主要是由美国太空总署(NASA)和 国防部国家测绘局(NIMA)联合测量处理得到的,其DEM数据覆盖了全球超过90%的区域, 空间分辨率约为90m,可以免费下载)网站上下载了110~115E,30~35N投影带之间的DEM 数据,把坐标系统转换为beijing54投影坐标系统后,裁减了距离武汉西北方向100公里的一 块山区地带,作为实验数据进行了模拟比较。表1为LIDAR指定飞行参数。

测区面积	111.73 km ²	测区最高点高程	278 m
测区最低点高程	31 m	测区平均高度	146.35 m
飞行高度	1000 m	飞行方向	-25°
飞行速度	60 m/s=216km/h	激光脉冲频率	25000 HZ
扫描频率	100 HZ	扫描张角	60°
旁向重叠度	20%	最小旁向重叠度为	15%
旁向安全因子	25%	航向安全因子	25%
扫描平均带宽	1154.70 m	激光脚点密度	0.36个/平方米
激光脚点航向间距	0.6 m	激光脚点旁向间距	4.62 m

表1 LIDAR传感器的指定飞行参数

从上面参数可知,测区高程变化范围在31~278m,如果不考虑地形起伏,敷设出的相邻 航线重叠区内最高点的重叠度可能小于最小重叠度qymin,还有可能大于旁向重叠度qy,这 时若想满足设计中关于重叠度的要求,需调整基线长度。表2为敷设航线的一些基本参数, 左边不考虑DEM,右边考虑DEM。

不考虑DEM				考虑DEM					
NO	基线长 (m)	重叠区最 高点高程	最高点 重叠度	NO	基线长 (m)	重叠区最 高点高程	最高点 重叠度		
1				1					
2	923.76	64.00	0.26	2	999.83	64.00	0.20		
3	923.76	71.00	0.26	3	993.37	71.00	0.20		
4	923.76	69.00	0.26	4	995.21	69.00	0.20		
5	923.76	78.00	0.25	5	971.20	95.00	0.20		
6	923.76	107.00	0.23	6	956.42	111.00	0.20		
7	923.76	169.00	0.18	7	923.76	164.00	0.19		
8	923.76	176.00	0.18	8	923.76	183.00	0.17		
9	923.76	159.00	0.19	9	900.37	196.00	0.18		
10	923.76	215.00	0.14	10	880.74	249.00	0.15		
11	923.76	197.00	0.16	11	923.76	205.00	0.15		
12	923.76	160.00	0.19						
	合格至	率	6/12=50%		合格至	率	100%		

表2 航线信息比较

中国科技论文在线

图4为原始测区(紫色多边形),图5为不考虑DEM的敷设结果,图6为考虑DEM的敷设

结果。通过以上不考虑DEM和 考虑DEM的敷设结果比较,可 以看到考虑DEM的敷设优势: ①符合有关重叠度的设计要 求。不考虑DEM的结果中,第 2~6条相邻航带重叠区内最高 点重叠度均大于q_v=20%, 第10

图 6 考虑DEM

条的小于 $q_{y \min}$ =15%,其余介于 $q_{y \min}$ 和 q_{y} 之间,合格率仅50%;而考虑DEM的结果中,延 长了第2~6条摄影基线, 缩短了第10条摄影基线, 使得所有相邻航带重叠区内最高点重叠度 均介于q_{vmin}和q_v之间,合格率100%。②节约成本。在地形起伏较大的区域,传统情况为了 使测区内最高点的重叠度达到要求, 就无选择的增加重叠度, 航线条数必然增多。即使按照 测区的平均基准面来设计航线,一般情况重叠区内最高点重叠度会大于q_v,而只有地势特 别高的极少数区域最高点重叠度才有可能小于q_{vmin},因此总的来说,通过考虑DEM调整基 线后,航线条数会减少的。从上面考虑DEM的模拟结果也可看出,不考虑DEM需敷设12条 航线; 而考虑DEM后, 只需敷设11条航线。

此外,航摄前,从SRTM网站上下载目标区域的DEM数据,事先使用该系统进行模拟, 可以清楚、直观的看到每条航带的覆盖区域,以及相邻航带的重叠度,哪些地方需单独增减 重叠度,只需手工调整航线位置,即可查看模拟飞行结果,这样得到的飞行参数更为合理, 以免结果不合要求而重新拍摄。

4 结束语

本文分析了地形起伏对航带重叠度的影响,参照国家测绘标准中有关相机部分,深入讨 论了基于DEM的LIDAR传感器的可视化飞行路线设计中的关键技术,并基于VC++实现以上 算法。最后,通过对比分析考虑DEM和不考虑DEM两种飞行效果,实践表明,这样能够直 观地设计出更为合理、准确的飞行路线。此外,同原来人工结合基本比例尺地形图地貌,通 过手算来完成航线设计相比,能提高设计人员的工作效率,还能节约一定飞行成本。

参考文献

- [1] 朱武. 基于DEM的航空摄影设计方法研究[D]. 北京:国家基础地理信息中心, 20021.
- [2] 刘倩, 王学志, 任维成. 对线路选线航空摄影航线设计几个问题的探讨[B]. 测绘科学, 2008.
- [3] 谭成国, 范业稳, 司顺奇. 基于DEM的地理坐标系下航空摄影技术设计[D]. 测绘科学, 2008.
- [4] 藤长胜. 航空摄影技术设计的方法研究与实现. 2008.
- [5] 国家测绘局等. 测绘标准汇编摄影测量与遥感卷[S]. 北京:中国标准出版社, 2003.
- [6] Reuter H.I, A. Nelson, A. Jarvis, An evaluation of void filling interpolation methods for SRTM data, International Journal of Geographic Information Science, 2007, 21:9, 983-1008.

DEM-Based Onboard LIDAR Flight Course Design

Research

Wang Dongliang, Wan Youchuan, Xu Jingzhong, Lai Xudong School of Remote Sensing and Information Engineering, Wuhan University, 129 luoyu Road, Wuhan((430079)

Abstract

Existing flight course design software, such as such as the ASCOT and CCNS4, do not take our country aerial photography standard and a new sensor- LIDAR into consideration. Responding to the status quo, this paper refers to the camera part of our country aerial photography standard, deeply research some key technologies of DEM-Based Onboard LIDAR Flight Course Design, and implement these algorithms basing on VC++. The results show that it can ensure that the designed result is more reasonable and precise, and save a little cost because of lessening some flight courses. **Keywords:** aerial photography; DEM; LIDAR flight course design; overlaps

项目来源:博士点基金(20060486041);测绘遥感信息工程国家重点实验室专项科研经费项目;国家863资助项目(2006AA122101)