

SM331 INFORMATION COLLECTION

(Updated November 2004)

SLC A&D CS

November 2004

1.	西门]子自动化与驱动产品的在线技术支持	. 4
2.	如何	「获得西门子自动化与驱动产品的资料	. 5
3.	需设	と备选型及订货	. 5
4.	西门]子技术支持热线	. 5
5.	西门]子自动化产品的其它网站	. 6
6.	需要	ē SM331 的产品手册	. 6
7.	标准	E及认证	. 6
8.	SM3	331 搬 运、存储、运行的环境要求	. 7
9.	SM3	331 常用信息	. 7
10.	缩写	弱词含义	. 7
11.	如何	J使用 SM331	. 8
12.	在S	STEP 7 的硬件目录里找不到想要配置的硬件	. 9
13.	SM3	331 上不使用的通道的接线	10
14.	如何	「在 STEP 7 中设置 SM331 的参数并访问其通道	10
14	.1.	如何在 HW Config 中设置 SM331 的参数	10
14	.2.	在程序中对模拟量输入地址的访问	11
15.	如何	J连接传感器及外部电源到 SM331 模板	11
16.	连接	卷二线制变送器到 SM331 模板	12
16	.1.	两线制信号(2DMU)与四线制信号(4DMU)的区别	12
16	.2.	如何连接两线制变送器到只能接入四线制信号的模板	12
16	.3.	两线制信号与四线制信号接线的注意事项	12
16	.4.	不同类型传感器到 SM331-7Kx0x 的接线实例	12
17.	连接	⊱热电偶到 SM331 模板	12
17	.1.	使用 6ES7 331-7KFxx-0AB0 及 6ES7 331-7KBxx-0AB0 接入热电偶时的参数	¢
(T(C-I/IL/	/E/EL)说明	12
17	.2.	为什么要用补偿盒对 SM331 进行外部冷端补偿及怎样补偿(6ES7	
33	1-7KF	Fxx-0AB0 及 6ES7 331-7KBxx-0AB0)	13
17	.3.	热电偶量程转换	13
18.	连接	€热电阻到 SM331 模板	13
18	.1.	热电阻测量原理及连接两线、三线、四线热电阻到 6ES7 331-7Kxxx-0AB0	13

18	.2.	热电阻量程转换	.13
18	.3.	为什么用数字万用表测量不到 SM331 模板用来测量外部电阻值的恒流	.14
18	.4.	连接三线制热电阻到 6ES7331-7PF00-0AB0 的注意事项	.14
19.	连接	HART 协议仪表到 SM331 模板	14
19	.1.	如何连接支持 HART 协议的仪表到 SM331 模板	.14
19	.2.	怎样用 SM331(6ES7331-7TB00-0AB0)读 HART 仪表的数据	.15
19	.3.	连接 HART 仪表到常规 S7-300 模拟量输入模板	.15
19	.4.	6ES7331-7TB00-0AB0 不用通道的设置	.15
19	.5.	SM331 是否支持 HART 协议多点模式	.15
20.	怎样	设置并修改 SM331 的分辨率	15
21.	STE	P7 中用于读取模拟量的功能块	15
22.	读出	的模拟量值超限	16
23.	SM3	31 SF 灯亮	17
24.	直接	将来自 0 区或 1 区的传感器信号接入 S7-300 Ex(i) 模板	18
25.	与 S	M331 有关的 OB 块	18

1. 西门子自动化与驱动产品的在线技术支持

首先,建议您访问 Siemens A&D 的产品与技术支持网站 http://www4.ad.siemens.de/

在主页的 Product Support 中选择您关心的产品或信息,或利用 Search 引擎直接输入关键字搜索。

您还可以访问西门子(中国)自动化与驱动集团的主页<u>www.ad.siemens.com.cn</u>,如下 图所示。该网站同样可以提供大量的产品和系统的信息。

dallack a sh a 10% i	1 A Diseasch Gall	another (States (A) 104- (A 107 - 100	£		
Address A Min : ((manual	ad size and de Loren-D12511	100000 310000 291 3- 3 100 1000	- Unit 16 7801 - anno - WW Missari, All'Aldrevino - 2008 Javan	-Hardener-ADM/PCOReari AD. •	al Go Units "
and the part of the local					
	SI	IEMENS		→siemens.com Intranet	
- Aller	Internet internet	ternational -> Automation and Drive	es Deutsch) English França	iti italianoj Espanoj Contect Stemap	
Automation and Drive	ts Ibr	nn(产品文符(服务)信息)文符终市			
Service & Support				Advanced	NERR
				(日本) 物理中心	-
	Automation	and Drives Service & Support I	ntemational	120 单击得到更多关于此产 品的信息	
	请选择国家	· 101		all Christian Strenger	
	-	3	11	Cores achter	
	产品来新			nySupport → 这是什么?	
		在"产品支势" 新块中燃料得到关于我们"高	与系统的所有技术文档,例如应用技巧.	5.53 1. 25.1-2-1-27.00	
	ter in Arabitation ter in Arabitation	常同问题,下數、手借罪以证等。这些将为原	的技樂问職提供解決方案。		
	产品效用		文档共量	K.K.	
	→ <u>組助技米</u>	→ <u>抽感機技术、副量等</u>	→ 王田 印	→ 18不能和 (一) 全球脱氧人	
	→ <u>日初化</u> 発程 → 唐 温·何格	→ <u>思想</u> → 安全系統安全集成	◆ 竹匠 ● ◆ 工廠 ◆D	(四 技术论版	
	- 使压电器	→ 系统解决方案和行业产品应用		→ 10588条	
	-+ <u>NUME EDITOR</u>		-21	+ 备件	
	技术服务	支持接电	-	XII	
	无法		主法是没可以得到实现化的自然。	2 (二)新闻登通	
	104	時約1%。然後來自至前回離下了。 時約2%時代全方位的顧客与史	用的更快更有效的主方位的厚存 方案。	2 ANRIST	
		- 王族	→ 軟件細胞	Rth	
	- 林子浩道		-> 自动化增值卡	(二 在就帮助	

2. 如何获得西门子自动化与驱动产品的资料

首先,建议您通过 Siemens A&D 的网站搜索并下载。 您还可以致电 010-64721888 转 3785 /3726 索取资料。

另外,还有大量的手册可以通过分销商订购,订货方式和其它产品一样。

3. 需设备选型及订货

如需设备选型及订货,请联系西门子公司销售当地西门子分销商。分销商联系方式可 致电 010-64719990 获得。

4. 西门子技术支持热线

如有无法自行解决的技术问题,请拨打西门子技术支持热线 010-64719990 登记,等待西 门子技术支持工程师回复。我们会在 8 小时内予以响应。

请注意在登记问题时尽量准确地描述所使用产品的类型,以便尽快得到负责该产品的

工程师的帮助。

技术支持传真: 010-64719991。

技术支持邮箱: <u>adscs.china@siemens.com</u>。

5. 西门子自动化产品的其它网站

<u>www.s7-200.com</u> 提供 S7-200 PLC 相关知识及软件下载。

www.mall.ad.siemens.com 查找西门子自动化与驱动的所有产品订货号、图片、及技术参数。

6. 需要 SM331 的产品手册

如需要标准 SM331 模板手册,请点击 <u>http://www4.ad.siemens.de/WW/view/en/8859629</u> 下载。

如需要 Ex 模板手册,请点击 <u>http://www4.ad.siemens.de/WW/view/en/1096709</u> 下载。

7. 标准及认证

- 1. CE approval
- 2. UL approval
- 3. CSA approval
- 4. FM approval

- 6. Identification for Australia
- 7. IEC 61131
- 8. Shipbuilding approval

详细信息请参见模板手册。

5.

8. SM331 搬运、存储、运行的环境要求

标准模板运行状况下要求的气候条件参见下表:

Climatic Conditions	Permitted range	Remarks
Temperature: horizontal installation: vertical installation:	from 0 to 60°C from 0 to 40°C	_
Relative humidity	10 to 95 %	Non-condensing, corres- ponds to relative humi- dity (RH) Class 2 accor- ding to IEC 61131, Part 2
Atmospheric pressure	1080 to 795 hPa	Corresponding to an alti- tude of –1000 to 2000 m
Concentration of contami- nants	SO_2 : < 0.5 ppm; RH < 60 %, non-condensing H ₂ S: < 0.1 ppm; RH < 60 %, non-condensing	Test: 10 ppm; 4 days Test: 1 ppm; 4 days

SIPLUS S7-300 模板应用于扩展的环境条件下,扩展的环境条件描述如下:

- Operation possible at temperatures from -25°C to +60°C 扩展运行温度范围-25°C到 • +60°C
- Occasional, brief condensation permitted 允许偶尔的、短暂的凝结 •
- Increased mechanical stress permissible 机械耐压性能增强 ٠

详细信息请参见模板手册。

9. SM331 常用信息

SM331 模板是西门子 S7-300 系列 PLC 中的模拟量输入模块,常用模板的信息请参见

缩写词含义 10.

FAQ: Frequently Asked Questions 经常问到的问题

M +: Measuring lead (positive) 信号线(正)

M-: Measuring lead (negative) 信号线(负)

MANA: Reference potential of the analog measuring circuit 模拟量输入回路的参考电势

M: Ground terminal 接地端

L +: Terminal for 24 VDC supply voltage 24VDC电源接线端

UCM: Potential difference between inputs and reference potential of the MANA measuring circuit

信号输入端与MANA间的电势差

UISO: Potential difference between MANA and M terminal of CPU MANA与CPU的M端间的电势

差

- I +: Measuring lead for current input 电流输入测量端
- U +: Measuring lead for voltage input 电压输入测量端

11. 如何使用 SM331

使用 SM331 的基本步骤如下:

- 1. Select the module 模板选型
- With some analog input modules: set the measuring method and measuring range by means of the measuring range module 通过量程卡确定测量类型、测量范围
- 3. Install the module in the SIMATIC S7 network 安装模板
- 4. Assign parameters to module 设置参数
- 5. Connect measuring sensor or loads to module 连接传感器到模板
- 6. Commission configuration 调试
- 7. If commissioning was not successful, diagnose configuration 如调试出错, 做相应的诊断

如采用电流输入,请点击 <u>http://www4.ad.siemens.de/WW/view/en/17473828</u> 下载 SM331

AI8x12Bit Getting Started Part 1: 4-20 mA 手册。

如采用电压或PT100 输入,请点击 <u>http://www4.ad.siemens.de/WW/view/en/18971030</u> 下载

SM331; AI 8 x 12 Bit Getting Started Part2: Voltage and PT100 手册。

如采用热电偶输入,请点击 <u>http://www4.ad.siemens.de/WW/view/en/18972936</u> 下载 SM331;

AI 8 x 12 Bit Getting Started Part 3: Thermo Couples 手册。

12. 在 STEP 7 的硬件目录里找不到想要配置的硬件

如果在 STEP 7 的硬件目录中找不到想要配置的硬件, 解决办法如下:

1. Installing Hardware Updates 安装硬件更新

As of STEP 7 V5.2, you can subsequently install components for the Hardware Catalog. In this way you can use individual components such as new CPUs or new I/O devices in the current version of STEP 7 without having to install a new service pack.

STEP 5 V5.2 以上版本,可以随后安装硬件目录里的元件。这样就可以在不安装补丁程序的情况下使用新的单独的硬件,如 CPU 或 I/O。

Procedure:

- Ø Select the menu command Options > Install HW Updates.
- Ø In the dialog that appears, specify whether the HW update should be downloaded from the Internet or copied from a CD or

whether you want to install updates that have already been download (selection available)

Ø Select the component to be installed and then click the "Install" button.

操作步骤:

- Ø 选择菜单命令 Options > Install HW Updates.
- Ø 对话框显示硬件更新需从 Internet 上下载,或从 CD 上拷贝,或已经下载并储存(可选)
- Ø 选择要安装的硬件并点击"Install" 按钮。
- 2. 如果您使用的是 STEP 7 V5.1 或者更低的版本,而在 STEP 7 的硬件目录里找不到 想要配置的硬件,那么首先建议您到 <u>http://www4.ad.siemens.de</u> 网站上下载 STEP 7 的补丁程序,如 SP6 for STEP 7 V5.1 或 SP1 for STEP 7 V5.2 并安装,如果仍然找不 到想要配置的硬件,就必须找当地的分销商升级 STEP 7 软件到最新的版本。目前 STEP 7 的最新版本为 V5.3。

13. SM331 上不使用的通道的接线

14. 如何在 STEP 7 中设置 SM331 的参数并访问其通道

14.1. 如何在 HW Config 中设置 SM331 的参数

通常,在硬件配置中 SM331 的属性设置包括 General, Addresses, Inputs 三项,见下图:

Hardware Inte	rrupt When Limi	t Exceeded	
0-1	2.3	4 - 5	6.7
	Г		
Г	Г	Г	Г
14. 14.			
E	E	E	E
+/-10 V	+/· 10 V	+/·10V	+/-10V
[B]	[8]	[B]	[B]
50 Hz	50 Hz	50 Hz	50 Hz
Channel 0	Channel 2		
	1ardware Inte 0 - 1 E +/- 10 V [B] 50 Hz Channel 0	Iardware Interrupt When Limi 0 - 1 2 - 3 Image: Constraint of the second seco	Hardware Interrupt When Limit Exceeded 0 - 1 2 - 3 4 - 5 Image: Constraint of the second s

在 General 中包含对模板信息的描述。在 Addresses 中定义该模板各通道在系统中的 I/O 地址,在程序中可以用 PIW 的方式访问,如 PIW218。在 Inputs 中包含诊断中断、硬件中断、断线检测、测量类型、测量范围、量程卡等的相关设置与信息,详细描述请点击右下角 Help 键。

其中一个参数需要注意:

Integration Time/ interference frequency suppression 积分时间/干扰频率抑制

交流供电网络的电源频率会干扰测量值。用这个参数可以指定系统所使用的供电电源的频 率。

• 干扰频率: 选择系统供电电源频率 (50 Hz or 60 Hz)

积分时间相应地决定了下列参数:

- 干扰频率抑制
- 分辨率

下表表明了参数间的关系:

Resolution	Interference frequency	Integration time	Basic execution time
9 Bit	400 Hz	2,5 ms	24 ms
12 Bit	60 Hz	16,6 ms	136 ms
12 Bit	50 Hz	20 ms	176 ms
14 Bit	10 Hz	100 ms	816 ms

14.2. 在程序中对模拟量输入地址的访问

在程序中对模拟量输入地址的访问分为直接地址及过程映像两种。直接地址即直接访问在 HW Config 中定义的地址,如该通道地址为 120,则在程序中访问 PIW120(PI: Peripheral Input)即可。过程映像则是在程序中直接访问 CPU 的 process image,如该通道地址为 120, 则在程序中访问 IW336 即可。两者差别如下:

与对输入/输出模板的直接地址访问相比,访问过程映像的主要优点在于在一个程序扫描周 期内 CPU 的过程映像保持不变。如果在程序执行过程中输入模板的信号状态改变,过程映 像将保持到下一个循环扫描周期再次更新为止。在用户程序内对输入信号的重复扫描保证 了程序总能访问到一个稳定的输入信号。

同样,访问过程映像所需要的时间远远少于访问直接地址,因为过程映像位于 CPU 的内部存储器中。

15. 如何连接传感器及外部电源到 SM331 模板

请参见模板手册中相应订货号的模板的外部接线图。

常用模拟量模板 SM331-7KB0x and SM 331-7KF0x 外接不同类型传感器的接线方法参见

或者,请点击 http://www4.ad.siemens.de/WW/view/en/264773 阅读在线 FAQ。

16. 连接二线制变送器到 SM331 模板

16.1. 两线制信号(2DMJ)与四线制信号(4DMJ)的区别

或点击 http://www4.ad.siemens.de/11024133 阅读在线 FAQ。

16.2. 如何连接两线制变送器到只能接入四线制信号的模板

请点击 http://www4.ad.siemens.de/WW/view/en/18475312 阅读在线 FAQ。

16.3. 两线制信号与四线制信号接线的注意事项

二线制传感器:

- 连接 Mana 到 M (管脚 11 和 20 间的跳线),并连接管脚 10 和 11 间的跳线;
- 短接一个组内不用的通道或用 3.3 千欧电阻跳接。

四线制传感器:

- 连接所有 Mx- 到 Mana, 并连接管脚 10 到 11;
- 串联一个组内不用的通道并连接 Mx- 到 Mana 。

16.4. 不同类型传感器到 SM331-7Kx0x 的接线实例

请点击 http://www4.ad.siemens.de/WW/view/en/264773 阅读在线 FAQ。

17. 连接热电偶到 SM331 模板

17.1. 使用 6ES7 331-7KFxx-0AB0 及 6ES7 331-7KBxx-0AB0 接入热电偶时的参数

(TC-I/IL/E/EL)说明

请点击 http://www4.ad.siemens.de/WW/view/en/19243010 阅读在线 FAQ。

17.2.为什么要用补偿盒对 SM331 进行外部冷端补偿及怎样补偿(6ES7

331-7KFxx-0AB0 及 6ES7 331-7KBxx-0AB0)

请点击 <u>http://www4.ad.siemens.de/WW/view/en/18272332</u> 阅读在线 FAQ。

17.3. 热电偶量程转换

各分度的热电偶量程转换表,请参见模板手册 5.3.1 章节: Analog Value Representation for Analog Input Channels。模板手册请点击 <u>http://www4.ad.siemens.de/WW/view/en/8859629</u> 下载。

18. 连接热电阻到 SM331 模板

18.1. 热电阻测量原理及连接两线、三线、四线热电阻到 6ES7 331-7Kxxx-0AB0

请点击 http://www4.ad.siemens.de/WW/view/en/8460832 阅读在线 FAQ。

18.2. 热电阻量程转换

各分度的热电阻量程转换表,请参见模板手册。

常用的 PT100 热电阻量程转换表如下:

Analog value representation for RTD Resistance Temperature Detectors Pt x00 standard

Pt x00 standard	Un	iits	Pt x00 standard	Un	iits	Pt x00 standard	Un	its	
in °C (1 digit =0.1°C)	decimal	hexa- decimal	in °F (1 digit =0.1 °F)	decimal	hexa- decimal	in K (1 digit = 0.1 K)	decimal	hexa- decimal	Range
> 1000.0	32767	7FFF _H	> 1832.0	32767	7FFF _H	> 1273.2	32767	7FFF _H	Overflow
1000.0 : 850.1	10000 : 8501	2710 _H : 2135 _H	1832.0 : 1562.1	18320 : 15621	4790 _H : 3D05 _H	1273.2 : 1123.3	12732 : 11233	31BC _H : 2BE1 _H	Overrange
850.0 : -200.0	8500 : 2000	2134 _H : F830 _H	1562.0 : 328.0	15620 : _3280	3D04 _H : F330 _H	1123.2 : 73.2	11232 : 732	2BE0 _H : 2DC _H	Rated range
-200.1 : -243.0	-2001 : -2430	F82F _H : F682 _H	-328.1 : -405.4	-3281 : -4054	F32F _H : F02A _H	73.1 : 30.2	731 : 302	2DB _H : 12E _H	Underrang e
<-243.0	-32768	8000 _H	< -405.4	-32768	8000 _H	< 30.2	32768	8000 _H	Underflow

Table 4-16 Analog value representation for RTD Resistance Temperature Detectors PT 100, 200, 500, 1000

Analog value representation for RTD Resistance Temperature Detectors Pt x00 climate

Table 4-17	Analog value representation for RTD Resistance Temperature Detectors Pt 100, 200, 500,
	1000

Pt x00 climate	Units		Pt x00 climate		iits		
in °C (1 digit = 0.01°C)	decimal	hexa- decimal	in °F (1 digit = 0.01 °F)	decimal	hexa- decimal	Range	
>155.00	32767	7FFF _H	>311.00	32767	7FFF _H	Overflow	
155.00 : 130.01	15500 : 13001	3С8С _Н : 32С9 _Н	311.00 : 266.01	31100 : 26601	797С _Н : 67Е9 _Н	Overrange	
130.00 : -120.00	13000 : -12000	32C8 _H : D120 _H	266.00 : 184.00	26600 : -18400	67Е8 _Н : B820 _Н	Rated range	
-120.01 : -145.00	-12001 : -14500	D11F _H : C75C _H	184.01 : 229.00	-18401 : -22900	В81F _H : А68C _H	Underrange	
<-145.00	-32768	8000 _H	<-229.00	-32768	8000 _H	Underflow	

本文仅列出常用的 Pt 电阻的量程转换表,如果使用 Cu 电阻或 Ni 电阻,请参见模板手册 5.3.1 章节: Analog Value Representation for Analog Input Channels。模板手册请点击 http://www4.ad.siemens.de/WW/view/en/8859629 下载。

18.3. 为什么用数字万用表测量不到 SM331 模板用来测量外部电阻值的恒流

请点击 http://www4.ad.siemens.de/WW/view/en/13963555 阅读在线 FAQ。

18.4. 连接三线制热电阻到 6ES7331-7PF00-0AB0 的注意事项

在连接三线制热电阻到 6ES7331-7PF00-0AB0 这块模板时有一个注意事项,在模板手册中 有一条说明: The resistance measurement for a three-conductor connection is performed every 5 minutes。也就是说,在三线制热电阻接入这块模板时,第一次从模板读到数据需要5分钟 的时间,因为模板每5分钟计算一次热电阻的长线补偿值。

19. 连接 HART 协议仪表到 SM331 模板

19.1. 如何连接支持 HART 协议的仪表到 SM331 模板

19.2. 怎样用 SM331(6ES7331-7TB00-0AB0)读 HART 仪表的数据

19.3. 连接 HART 仪表到常规 \$7-300 模拟量输入模板

请点击 http://www4.ad.siemens.de/WW/view/en/2043180 阅读在线 FAQ。

19.4.6ES7331-7TB00-0AB0 不用通道的设置

请点击 http://www4.ad.siemens.de/WW/view/en/14034159 阅读在线 FAQ。

19.5. SM331 是否支持 HART 协议多点模式

SM331 不支持连接多个 HART 协议设备到一个模拟量输入通道,即多点模式(multi-drop system)。对 SM331 HART 模板,每个输入通道只能连接一个 HART 现场设备,即单点模式(mono-drop system)。HART 协议与模拟信号同时传送,并且可以接入 HART 仪表手操器 设定仪表参数。

20. 怎样设置并修改 SM331 的分辨率

请点击 http://www4.ad.siemens.de/WW/view/en/42510 阅读在线 FAQ。

21. STEP 7 中用于读取模拟量的功能块

在STEP 7 中可以调用FC 105 "SCALE" (Scale Values) 来读模拟量值。 在STEP 7的 Standard library的子目录TI-S7 Converting Blocks下可以找到这个块。该块的功能描述及管 脚定义详见STEP 7在线帮助。

参数	类型	数据类型	存储区	描述
EN	输入	BOOL	I,Q,M,D,L	使能输入,高电平有效
ENO	输出	BOOL	I,Q,M,D,L	使能输出,如正确执行完毕,则为1
IN	输入	INT	I,Q,M,D,L,P, Constant	要定标为工程量的输入值
HI_LIM	输入	REAL	I,Q,M,D,L,P, Constant	工程量上限
LO_LIM	输入	REAL	I,Q,M,D,L,P, Constant	工程量下限

FC105 的参数:

BIPOLAR	输入	BOOL	I,Q,M,D,L	1表示输入为双极性,0表示输入为单极性
OUT	输出	REAL	I,Q,M,D,L,P	定标转换结果
				返回值 W#16#0000 代表指令执行正确。如
RET_VAL	输出	WORD	I,Q,M,D,L,P	返回值不是 W#16#0000,则需在错误信息中
				查该值的含义

例子**:**

如输入 I0.0 为 1, SCALE 功能被执行。下面的例子中, 整形数 22 将被转换成 0.0 到 100.0 的实数并写到 OUT。输入是双极性 BIPOLAR, 用 I2.0 来设置。

执行前:

IN-----MW10=22

HI_LIM-----MD20=100.0

LO_LIM-----MD30=0.0

OUT-----MD40=0.0

BIPOLAR-----I2.0=TRUE

执行后:

OUT-----MD40=50.03978588

22. 读出的模拟量值超限

请点击 <u>http://www4.ad.siemens.de/WW/view/en/11966082</u> 阅读在线 FAQ。

通常,从 SM331 的通道中读出 7FFF 上溢值或 8000 下溢值的现象可以通过正确的外部接 线避免,各种信号及各订货号模板的接线参见本文相关章节。如果在外部接线完全满足模 板要求的情况下,仍然出现读数超限,则有可能是信号源接地不好、信号电缆敷设过程中

有电磁干扰等原因造成 M-与 Mana 间电势差 Ucm 过大。这种情况下建议采用有源信号隔离器。

23. SM331 SF 灯亮

SM331 SF 灯亮表明硬件故障。可能的原因如下:

- Ø 模板所需 24VDC 电源未正确接入;
- Ø 前连接器未插到位;
- Ø 总线连接器未连好;
- Ø 量程卡所插的方向与HW Config 中的设置不符;
- Ø 有硬件中断或诊断中断产生(断线、超限),等等。

如出现 SM331 模板的 SF 灯亮,应按照上述几条一一检查,另外需说明的是模板侧面的量程卡应插的方向可在硬件配置中读到,参见下图:

HW Config - [SIMATIC 300(2) (Configuration) 57_Pro1]									
🕅 Station Edit Insert PLC View Optio	ns Window Help								
	🛍 🋍 🗈 🔜 🕺 🕅								
== (0) UR 1 2 [] CPU 315-2 DP	roperties - A18×12Bit - (R0/9 General Addresses Inputs Enable I Diagnostic Interrupt I	5 4) Hardware Inter	rupt When Limit	Exceeded		X			
X2 DP	Input	0-1	2.3	4 - 5	6.7				
4 Al8x12Bit 5 6 7 7 8 9 10 11	Diagnostics Group Diagnostics: with Check for Wire Break: Measuring Measuring Type: Measuring Tronge: Position of Measuring Range Selection Module: interference frequency Trigger for Hardware Interrupt	Image: Constraint of the second sec	2DMU [2DMU [420 mA [D] [50 Hz <u>Channel 2</u>	E +/- 10 V [B] 50 Hz	Image: Filler Image: Filler				
	High Limit: Low Limit: OK	<u> </u>		C	ancel He	lp			

在线察看模板信息的方法参见下图:

] <mark>⁄≱¦≌~¤ ¶∥</mark> <u>é</u>		Download Upload	Ctrl+L	
∍ທ∪	8	Download Module identification Upload Module Identification to P	, 26	PBNFIBLIS(1): DP master sus
1 PS 307 2A		Faulty Modules		
2	CPU 315-	Module Information	Ctrl+D	
3	DP	Operating Mode	Ctrl+I	
4	AI8xRTD	Clear/Reset		
5	AI4/A02x8/	Set Time of Day		
6	AI8xTC	Prepare Line Diagnostics		
7	CP 341-RS4	Monitor/Modify		
8	Al4x0/4 to 2	Update Firmware		
10 Al2x12Bit		Assign Ethernet Address		
11		PROFIBUS	•	

24. 直接将来自 0 区或 1 区的传感器信号接入 S7-300

Ex(i) 模板

请点击 <u>http://www4.ad.siemens.de/WW/view/en/12346645</u> 阅读在线 FAQ 来确认哪些信号可以直接接入。

如果所使用的 Ex 模板需要外接电源,则需采用 LK393 来隔离电源线和信号线,同时模板 应采用螺钉型接线端子,而不能采用弹簧型接线端子。

如要将 Ex 模板和非 Ex 模板在同一个 ET200M 站上混合使用,用法请点击 http://www4.ad.siemens.de/WW/view/en/19227549 阅读在线 FAQ。

25. 与 SM331 有关的 OB 块

Туре	of Organizatio	n Block Priority Cla	ss See also (STEP 7 Online Help)
Interr	upt	(Default)	
Main	program OB1	1	Organization Block for Cyclic Program
scan			Processing (OB1)
Cyclic	OB30	7	Cyclic Interrupt Organization Blocks

interrupts	OB31	8	(OB30 to OB38)				
1	OB32	9					
	OB33	10					
	OB34	11					
	OB35	12					
	OB36	13					
	OB37	14					
	OB38	15					
Hardware	OB 40	16	Hardware Interrupt Organization Blocks				
interrupts	OB41	17	(OB40 to OB47)				
-	OB42	18					
	OB43	19					
	OB44	20					
	OB45	21					
	OB46	22					
	OB47	23					
Redundancy	OB70 I/O Redundancy	25	"Error Handling Organization Blocks				
errors	Error (only in H	28	(OB70 to OB87 / OB121 to OB122)"				
	systems)						
	OB72 CPU						
	Redundancy Error						
	(only in H systems)						
Asynchronous	OB80 Time Error	25	Error Handling Organization Blocks				
errors	OB81 Power Supply	(or 28 if t	the (OB70 to OB87 / OB121 to OB122)				
	Error	asynchronou	JS				
	OB82 Diagnostic	error (OB				
	Interrupt	exists in t	the				
	OB83 Insert/Remove	startup					
	Module Interrupt	program)					
	OB84 CPU Hardware						
	Fault						
	OB 85 Program Cycle						
	Error						
	OB86 Rack Failure						
	OB87 Communication						
	Error						
Startup	OB100 Restart	27	Startup Organization Blocks				
	(Warm start)	27	(OB100/OB101/OB102)				
	OB101 Hot Restart	27					
	OB102 Cold Restart						
Synchronous	OB121 Programming	Priority of	the Error Handling Organization Blocks				
errors	Error	OB t	hat (OB70 to OB87 / OB121 to OB122)				
	OB122 Access Error	caused 1	the				

error

各 OB 块详细信息请参见 STEP 7 在线帮助。具体方法为:打开 STEP 7 Help,在 Index 中搜 索关键字 OBxx,即可查到该块的功能、可访问的临时变量等。