
 1

Serial Buses in
Industrial and Automotive Applications

Presented by

Neelima Chaurasia

Class: #368

欢迎来到控制中文网
http://www.cechinamag.com

 2

Overview

As consumer electronics, computer peripherals, vehicles and industrial applications add
embedded functionality, demand is growing for inexpensive, fast and reliable
communication media to serve these applications. As a result, increasing numbers of
processors and controllers are now integrated with different kinds of buses. These buses
are used for communication with PC software, development systems such as emulators,
or other devices within the network. Communication usually occurs in either serial or
parallel mode, with serial mode much more prevalent at this time.

The common integrated serial buses in microcontrollers are Universal Asynchronous
Receiver Transmission (UART), Serial Communication Interface (SCI), Synchronous
Peripheral Interface (SPI), Inter-integrated Circuit (I2C), and Universal Serial Bus (USB),
along with the automotive serial buses: the Controller Area Network (CAN) and Local
Interconnect Network (LIN). These buses differ in speed, physical- interface requirements
and communications methodology. This paper offers an overview of serial buses, drivers
and physical- interface requirements for embedded system design. Guidelines for
selecting the optimal buses and a comparison chart are provided. For illustration
purposes, a microcontroller-based design is used.

Serial vs. Parallel

The main advantage of a serial over a parallel bus is the small number of wires required
for communication. For instance, the LIN serial bus used in the automotive industry
needs only one wire to communicate with slave devices; a Dallas 1-Wire® bus uses one
wire to carry both signal and power.

Fewer wires mean fewer pins in the controller. A parallel bus integrated in a
microcontroller typically requires eight or more lines, depending on the address and data
bus size designed. Therefore, a chip that integrates a parallel bus needs at least eight pins
to interface with external devices. This increases the overall chip size. However, using
the serial bus it is possible to integrate the same chips into a smaller package.

Another factor to consider is that during the PCB board design, the parallel bus requires
more lines to interface with other peripherals. This leads to a bigger, more complex PCB
board, increasing the cost of the hardware.

It is easy to add a new device on a serial network without affecting the existing devices
on the network For example, obsolete devices on the bus can simply be removed and
replaced with the new IC.

Fault diagnostics and debugging are also very simple for serial buses. It is easy to trace a
defective device on the network and replace it without disturbing the network.

 3

On the other hand, parallel buses are fast compared to serial. A parallel processor bus,
“Redwood” from Rambus, can run as fast as 6.4GHz, whereas the top serial speeds never
exceed a few Megahertz.

Common Serial Protocols in Industrial and Automotive Applications

UART

The Universal Asynchronous Receiver Transmission (UART) is a general-purpose serial
data bus for asynchronous communication. The bus is bi-directional and capable of full-
duplex transmission and reception between two receive and transmit pairs.

In embedded designs UART is used for communication with PC software such as
monitor debugger or other peripheral devices such as EEPROM memory and RTC.

UART Communication

UART first converts the received parallel data into serial data for transmission. The
message frame starts with a low-level start bit followed by seven or eight data bits, an
optional parity bit and one or more high- level stop bits. When a receiver sees the start bit,
it recognizes that the data is ready to be sent and tries to synchronize with the transmitter
clock frequency. If parity is selected, the UART adds the parity bit at the end of the data
bits. The parity bit helps in checking the error of the data received.

In the reception process, the UART removes the start and stop bits from the message
frame, checks the parity for incoming bytes, and converts the data bytes from serial to
parallel. The UART also generates additional signals to indicate the status of the
transmission and reception. For example, if a parity error occurs, the UART sets the
parity flag.

The diagram below shows a data frame transmitted by UART.

Data Direction and Communication Speed

Typically data will be transmitted with least significant bit (LSB) first. However, some
UARTs allow the flexibility of the LSB or most significant bit (MSB) first option.

 ST D0 D1 D2 D3 D4 D5 D6 D7 P SP

ST: Start bit
D0-D7: Data bit
P: Parity bit
SP: Stop bit

Figure 1: UART Data Frame

 4

UARTs integrated in microcontrollers can transfer data at speeds ranging from a few
hundred bits per second up to 1.5 Mbps. For example, the high-speed UART embedded
in the ÉlanSC520 microcontroller can communicate at a speed of up to 1.1152 Mbit/s.
The UART baud rate is also limited by the distance (length of wires) between the
transmit and receive pair.

Types of UARTs

There are two kinds of hardware solution available for UARTs:

• Hardware that supports only asynchronous communication.
Typically this is referred by the name UART. In Motorola microcontrollers, it is
referred as the serial communication interface (SCI).

• Hardware that supports both synchronous and asynchronous
communication.
The Universal Synchronous Asynchronous Receiver Transmitter (USART) in
Microchip microcontroller and the UART in Fujitsu’s microcontroller are good
examples of this kind of hardware.

UARTs in Computers

The UART is the key component of the serial communication port on a computer. In the
computer the UART is connected to a circuitry that generates a signal compliant with the
RS232 specification. The RS232 standard defines the logic “1” signal to be between 3
and 25 volts, and the logic “0” signal to be between -3 and -25 volts with respect to the
ground. Therefore, when UART in a microcontroller is connected with the PC, it requires
a RS232 driver to convert the voltage levels. The MAX232 family from Maxim is an
example of a driver IC used for converting the voltage level and for connecting the
UART to the serial port of the computer.

SPI

The synchronous peripheral interface (SPI) is a full-duplex, synchronous serial bus
developed by Motorola. The bus is used frequently for communication with slow
peripheral devices such as EEPROM, ADC, FRAM and the display driver.

SPI Communication

The bus communication is based on a master-slave configuration. There are four signals:

• MOSI: Master Out/Slave In
• MISO: Master In/Slave Out
• SCK: Serial Clock
• SS: Slave Select

 5

The number of slave-select pins on the chip determines the number of devices to be connected
on the bus. The figure below shows the master-slave connection for two slave-select pins.

In an SPI transfer, data is simultaneously transmitted and received. The data is clocked
based on clock pulses from the master. Motorola has not defined any common SPI clock
specifications. However, the most common clock settings are based on two parameters:
clock polarity (CPOL) and clock phase (CPHA). CPOL defines the active state of the SPI
serial clock; CPHA defines the clock phase in respect of the SO-data bit. The settings of
CPOL and CPHA determine the edge of the clock at which data will be sampled.

The figure below shows the data latch for different combinations of CPOL and CPHA.

Data Direction and Communication Speed

SPI transfers the serial data as the MSB first. The baud rate can be as fast as 5Mbit/s
depending upon the SPI hardware. For example, Xicor’s SPI serial devices can transfer
data as fast as 5Mbit/s.

 MSB D6 D5 D4 D3 D2 D1 D0

 MSB D6 D5 D4 D3 D2 D1 D0

SCK (CPOL =0)

SCK (CPOL =1)

Data, CPHA =0

Data, CPHA =1

Figure 3: SPI data transfer for different clock

 MOSI

MISO

SCK

SS1

SS2

Master Device

 MOSI

MISO

SCK

SS

Slave device 1

 MOSI

MISO

SCK

SS

Slave device 2

Figure 2: Single Master, Two Slaves Implementation

 6

SPI vs. UART

SPI communication is faster than UART communication. Both can be used for moderate-
speed peripheral communication such as non-volatile EEPROM memory. However, SPI
is more commonly used with EEPROM or Digital to Analog Converter (DAC)
communications.

Some UARTs can support SPI communications. In those cases, a general-purpose IO pin
will serve as a slave-select pin.

I2C

The Inter-Integrated Circuit (I2C) is a two-wire synchronous bus developed by Philips.
Like SPI, this bus is useful for communication with slow peripheral devices such as
EEPROM, ADC, DAC and LCD.

I2C Communication

I2C is a half duplex, multi-master bus. The I2C network has one or more master devices
and many slave devices. The information is carried by two seria l wires: serial data (SDA)
and serial clock (SCL). The figure below shows an example of a connection using two
masters and three slaves.

Each device on the network is pre-assigned a unique 7- or 10-bit address. Philips assigns
the address to the manufacturer of the device. There is also a special address for high-
speed communication, and a general call address for communication with all the devices
on the network. The advantage of 10-bits addressing is that it allows more devices (up to

SDA

SCL

Master
Device 1

 Slave
Device 1

Slave

Device 2

Master

Device 2

SDA

SCL

SDA

SCL

SDA

SCL

 Slave
Device 3

SDA

SCL

+VDD

Figure 4: I2C Multi Master Multi Slave Implementation

 7

1024) to be on the network. However, the number of device on the bus depends on the
bus capacitance, which is limited to 400pF.

The master device initiates the data transfer and is responsible for supplying the clock
signal for communication. The communication starts with the high to low transition of
the data line (SDA), while the clock signal (SCL) is high. This is followed by a 7 or 10
bit slave address, a data direction bit (R/W), an acknowledgement bit and stop condition.
The stop condition is defined as low to high transition of the data line when the clock
signal is high. Every data byte is 8 bits long. However, there is no restriction on the
number of bytes transmitted per transfer.

Since I2C is a multi-master bus, it is possible that two or more masters might try to access
the bus simultaneously. The master that puts a “1” on the bus while the clock signal is
high wins the arbitration.

I2C has three different modes of operation: standard, fast and high-speed (Hs) mode.
When using the fast and high-speed modes, it is possible that a slave device may be
unable to process the data as fast as a master. In this situation, the slave holds the bus by
pulling the SCL line low. This forces the master device into the wait state until the slave
is ready.

The diagram below shows a complete data transfer on the I2C bus.

Data Direction and Communication Speed

Data is transmitted with the MSB first. The I2C bus is designed for the three-data
transmission speed, each with downward compatibility:

Low Speed: The data can be transmitted from 0 to 100 kbps.
Fast Speed: The data can be transmitted up to 400 kbps.
High-Speed: The data can be transmitted up to 3.4 Mbps.

1 2 7 8 9 1 -7 8 9
SCL

START SLAVE ADDRESS R/W ACK DATA ACK STOP

SDA

Figure 5: I2C DATA Transfer

 8

I2C vs. SPI

Both I2C and SPI are useful for communication with slow devices. However, because of
its high data rate, SPI is preferred over the I2C bus. In addition, SPI has a built- in address
capability, this reduces the overhead in the software and hardware for designing an
additional register to test the address.

Controller Area Network

The Controller Area Network (CAN) is a multi-master asynchronous serial bus. Because
of its excellent error-handling mechanism and the reliability of its data transmission, this
bus has become very popular in the automotive industry and is gaining popularity in the
healthcare industry for safety-critical equipment.

CAN was originally developed by the Robert Bosch Company in Germany to provide a
cost-effective communications bus for in-car electronics. Now it is an international
standard and is documented in ISO 11898 for high-speed applications and in ISO 11519
for lower-speed applications.

CAN Communication

When the bus is free any CAN node can start the transmission. If two or more nodes start
the transmission simultaneously, then the access conflict is resolved by the bit-wise
arbitration using the identifier. The CAN bus is a broadcast type of bus. Therefore, all
nodes receive the data on the bus. The filtering mechanism on the hardware decides
whether the message is intended for the node or not.

Types of Message Frames

There are four types of message frames.

• Data Frame: This frame carries data from a transmitter to a receiver. There are
two data-frame formats based on the CAN specification. The only essential difference is
in the length of the identifier. The CAN standard frame, also known as CAN 2.0A,
supports a length of 11 bits for the identifier. The CAN extended frame, also known as
CAN 2.0B, supports a length of 29 bits for the identifier.

The figure below shows the CAN data frame for both specifications.

 9

• Remote Frame: This frame is transmitted by a receive CAN node to request the
data frame with the identifier specified in the remote frame.

• Error Frame: This frame notifies other units about any bus error. On reception
of this frame the transmitter automatically tries to retransmit the message.

• Overload Frame: The overload frame is sent by a busy CAN node to request
an extra delay between the preceding and succeeding data frame.

S
 O
F

Identifier Control Field CRC A
C
K

EOF

Error Flags Error
Delimiter

Overload Flags Overload
Delimiter

SOF: Start of frame
RTR: Remote Request
IDE: Identifier extension
r0: Reserved bit
DLC: Data length

MISO

CRC: Cyclic redundancy check
CRC Del: CRC delimiter
ACK: Acknowledge
ACK Del: ACK delimiter
EOF: End of frame

S
 O
F

Identifier Control
Field

Data Field CRC A
C
K

EOF

 1 11 1 1 1 4 0-64 15 1 1 1 7

 SOF RTR CRC Del
 IDE ACK Slot
 r0 ACK Del

 Identifier DLC DATA CRC EOF

 Identifier Identifier

SRR
IDE

RTR

Standard
Frame

Extended
Frame

Figure 6: CAN Standard and Extended Data Frame

 10

CAN Hardware Terminology

• Basic CAN: This inexpensive CAN controller has limited transmit/receive
message buffers, and limited filtering mechanisms for CAN messages.

• Full CAN: The full CAN is an expensive, high-performance CAN controller with
eight or more message buffers for transmit and receive. For example, Fujitsu’s integrated
CAN microcontroller offers 16 message buffers for transmit and receive. In addition,
Fujitsu’s MB90443 triple-CAN microcontroller offers the flexibility to combine the message
buffer of two CAN controllers into one to form a 32-message buffer.

• Standard CAN: This CAN controller is capable of handling messages with
only an 11-bit identifier.

• Extended CAN: This controller can handle messages with both 11- and 29-bit
identifiers.

• Time triggered CAN (TTCAN): This CAN controller schedules the CAN
messages based on time or event triggering. The scheduling increases the total performance
and deterministic behavior of a CAN network.

Data Direction and Communication Speed

The data bytes are transferred with MSB first. A 0-to-8 data byte can be transferred in one
transmission. The maximum CAN bus speed is 1 Mbit/s.

CAN in Vehicles
The example below shows how the CAN network is connected in the car using Fujitsu’s
16-bit CAN microcontroller.

MB90495

MB90595

Steering
wheel remote

MB90495

MB90545 MB90590 MB90440 OR

High
Speed

Terminal
 resistance

Low Speed

MB90595 OR

Car Audio

MB90545

Power seat

Terminal
 resistance

ABS

Figure 7: CAN in vehicles

 11

Physical Interface

Most CAN microcontrollers require an external transceiver to connect to the physical
CAN bus. Here is the list of some of the transceivers available today:

For High-speed CAN

• Philips 82C251
• Texas Instrument SN65/75LBC031
• Bosch CF150, C250
• Unitrode UC5350

For Low-speed CAN

• Philips 82C252, TJA1053
• Siemens TLE 6252G

For Single-wire CAN

• Philips AU5790
• Infineon TLE 6255
• Delphi DK166153

LIN

A Local Interconnect Network (LIN) is a low-cost, one-wire serial bus capable of
performing full-duplex serial communication. LIN is used in distributed electronics
systems in cars such as communication with smart sensors and actuators. The LIN
protocol can be implemented on the low-cost common UART/SCI interface, which is
available in almost all microcontrollers.

LIN Communication

The LIN network consists of one master and multiple slave devices. The master device
initiates all the communication.

All nodes perform the slave communication task that includes the transmit and receive
task. In addition, the master node performs the master transmit task. The master task
decides when and which frame will be transferred on the bus. In this way there is no bus
arbitration and the worst-case time for each message can easily be calculated. When a
message frame is transmitted, only one slave device gets activated after reception and
filtering of the identifier.

All messages on the bus are sent as a frame. A frame consists of a header and response
field. The master always sends the header on the bus. The header consists of at least a 13-
bit break field, a sync byte and a 6-bits identifier that is in the range of 0 to 63. The
response field consists of two, four and eight data bytes, and the checksum field with
inverted 8 bit sums with carry of all data bytes and identifier.

 12

The figure below shows the mapping of all fields on a message frame.

 13

Data Direction and Communication Speed

The data bytes are transferred with LSB first. The maximum speed of a LIN bus is
20kbit/s.

Physical Interface

Very few microcontrollers integrate the dedicated LIN hardware. Most vendors provide
support using either SCI or UART. Since the LIN physical layer is a single-wire 12V bus
derived from the ISO9141 standard for automotive diagnostics, an external LIN
transceiver is required to convert the voltage level. Motorola’s IMC33689 LIN and
Infineon’s TLE 6259-2G are examples of the transceivers available in the market.

CAN vs. LIN

Both CAN and LIN are used in the automotive industry. CAN is used for high- and low-
speed networks in a vehicle, and LIN is used only for low-speed networks, such as a
door-control unit. In most respects, CAN is more expensive and reliable than LIN. So
there is a trade-off between the reliability and the additional cost to design the hardware
and software-using CAN. Since LIN costs less, and easy to implement on an UART, it is
expected that it will replace the low-speed CAN network applications.

Other Common Serial Buses

Other buses used in the microcontroller industry are RS422, RS485, USB and Microwire.

RS422 and RS485 communication can be performed using an UART. Therefore, no
additional hardware is implemented in microcontrollers for these buses.

The popularity of the USB bus has inspired microcontroller vendors to integrate the USB
controller into their microcontrollers. It is easy to add peripheral devices on the USB bus

Sync Break Sync Field Identifier field Data Field (s) Data Field Checksum Field

Header Response

Frame response Interbyte space

Figure 8: LIN Data Frame

 14

without needing to reboot the system. Cypress Semiconductor and other industry leaders
have a range of USB chips to meet market demand.

Microwire, a one-wire bus developed by National Semiconductor, is available in many
microcontrollers and non-volatile memory such as EEPROM and ADC. The bus offers
synchronous communication like SPI and can be used in place of SPI. Some
microcontroller vendors support the Microwire bus by using the UART.

A new upcoming bus in the automotive industry, FlexRay, can be used in place of a CAN
bus and will support data rates up to 10Mbit/sec, which is 10 times the speed of the CAN
bus. Currently microcontroller vendors are working on developing devices with FlexRay.

Guidelines for Selecting the Right Bus

The criteria for selecting a bus vary from application to application. Here are some
guidelines for making the best selection:

• Evaluate the system cost for connecting the various devices on the network using
the different serial buses. For instance, a system that requires only the control function
can be managed with a low-cost serial bus such as LIN in an automotive application.

• Identify what is most important to you, e.g. efficiency, speed or reliability. For
example, a safety-critical system where reliability is extremely important, CAN is a good
choice.

• Define how many devices will be on the network and what the bus capacitance
will be. Some serial buses have limitations on the number of devices that can be
connected on the network.

• Be careful about the distance between the devices. Some serial buses only support
short-distance communication.

• If the application is automotive, it is a good idea to use CAN or LIN because of
their robustness, fault tolerance and reliability of transmission.

Summary Table

The table below summarizes some key parameters for the above buses.

 15

Table 1: Bus Summary Table

Name
of the
bus

Number
of

wires*

Type of
communication

Multi
master
support

Data
rate

Number of
devices on

the bus

Cable
length

(meters)
UART 2 Async No 3kbps

to
4Mbps

2 1.5m
@128kbps

SPI 3 Sync No >1Mbps <10 <3m
I2C 2 Sync Yes 3.4Mbps

max
<10 <3m

CAN 2 or 1 Async Yes 20kbps
to

1 Mbps

128 40m @1mbps

LIN 1 Async No 20kbps
max

16 40m

Notes:

* Not including ground signal.

References

Books

1. Byron Putnam and Byron W. Putman, “Rs-232 Simplified: Everything
You Need to Know About Connecting, Interfacing & Troubleshooting
Peripheral Devices”.

2. Konrad Etschberger, “Controller Area network”

Internet

1. http://www.mct.net/faq/spi.html
2. www.can-cia.org

3. http://www.lin-subbus.org/

4. http://www.vector-cantech.com

5. http://www.kvaser.com/can/index.htm

6. http://www.flexray.com

 Bus Specification

1. “The I2C-bus specification,” version 2.1, Philips Semiconductors.
 2. “CAN specification 2.0,” Robert Bosch GmbH

