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A year ago, the ESC proceedings contained my paper Safety-Critical Design Techniques 
for Secure and Reliable Systems. This paper extends the considerations to security-
critical programs. Although traditionally a strong distinction has been drawn between 
safety and security, in the post-9/11 era many systems with safety requirements must also 
take security into account.  Safety-critical software will need to satisfy security-based 
standards, and high-security software reused in safety-critical systems will need to satisfy 
safety-based standards.  This paper explores the impact of these dual trends on software 
development. 

What is a Safety Critical Program? 
A program is safety-critical if human life depends on its correct operation. If there is a 
bug that results in a hazard, then death or serious injury can result. Typical examples are 
train signaling systems, avionics control, medical instrumentation, and space 
applications. Since the focus is on human safety, such programs must essentially be error 
free. 

That’s a strong requirement, especially given the common assumption that all large 
programs contain errors. But in our modern technological age we place our safety at the 
mercy of computer programs every time we board a train or plane, or enter a hospital, or 
even drive a car. We simply have to ensure that such programs are reliable, and as we 
will see in this paper, it is in fact possible and practical to achieve the seemingly very 
difficult goal of writing essentially error-free completely reliable software. 

What is a Security Critical Program? 
A program is security-critical if it must not only operate correctly, but do so in a 
potentially hostile environment. Certainly such a program must be free of internal 
defects, but it must also be designed to survive under all possible usage scenarios, 
including those with hostile elements such as humans intent on corrupting the results.  In 
a sense the requirement for security is more demanding than that for safety: a bug in a 
safety-critical program may be tolerable if it does not lead to a hazard, but in a security-
sensitive environment it must be assumed that virtually any bug can be exploited by 
antagonists.  



Security-critical applications arise in many different settings. Obvious examples are 
banking, management of classified or trade-secret data, and management of personal data 
such as social security and credit card numbers. Another major area, which has been the 
focus of a great deal of attention recently, is voting machines, where it is essential that the 
system not allow tampering from the outside.  Furthermore, in today’s interconnected 
world, networking software and also any code that runs on a networked system, should be 
considered security critical.  

The Relation between Safety and Security 
Not all security-critical applications are safety-critical. If a voting machine is 
compromised, then there is no immediate injury or loss of line. On the other hand, the 
indirect results can be serious. No one could doubt in the turbulent political climate of 
today’s world that the outcome of elections is in the long run a life and death issue. 
Similarly, compromising credit card records is not an immediate safety-critical issue, but 
for someone whose identify is stolen, the consequences can be extremely serious. We 
can’t really imagine a situation in which one of these security-critical applications is 
somehow taken less seriously on the grounds that there is no immediate loss of life on a 
failure. Such programs should be just as reliable and error free as the most critical 
avionics control system: there is little point in worrying about outside interference if the 
program itself is unreliable. So in this regard, we have to be at least as vigilant in 
ensuring that the program is free of defects. 
Looking at things the other way round, traditionally, safety-critical systems have focused 
on freedom from defects and fidelity to the specifications for the system, and security 
considerations have been secondary. For example, the Boeing 777 has a safety-critical 
avionics system (written entirely in Ada) that was subject to stringent certification and 
testing to meet the highest levels of safety-critical performance. But the issue of security 
as such was not a primary focus. 

Since the days of the 777, the world has changed. One of the effects of the devastating 
9/11 attacks was to make clear that everyone everywhere is at risk, and that all systems 
(especially those whose failure would cause great loss of life or property) are potential 
candidates for attack. An aircraft in flight can certainly be destroyed by a physical device 
such as a bomb, but it could also be brought down by compromising its avionics control 
system. Just how secure are such systems? On one episode of the TV series Alias, 
Marshall, the genius hacker, is flying for the first time and is nervous. At takeoff, he is 
furiously typing into his notebook computer, despite admonitions from the cabin 
attendant. He explains to Sydney that he has hacked into the plane’s avionics system to 
ensure that the captain has not forgotten any items on the take off checklist. An amusing 
scene – but quite unrealistic – or is it? These days we should be reluctant to take anything 
for granted, and it would seem that any system on which human life depends is a 
potential target for deliberate corruption (nuclear power station control, air traffic control, 
and other society infrastructure systems all come to mind).  
The bottom line is that safety and security concerns are merging. Traditionally these have 
been rather separate considerations. During the development of Ada 95, a language that 
specifically focuses on safety and security (there is a section of the Ada standard devoted 
to this topic), the language committee talked to both constituencies and was struck on the 



one hand by how similar the technical concerns were, and on the other by how separate 
the two communities were. These days we can hardly afford such separation, and we 
need to have both safety and security in mind for a wide range of applications. 

This paper will consider specifically the impact of safety and security requirements on 
software development. Note that this is only one of many concerns in total system 
development. Clearly hardware reliability and security are equally important, but this 
paper will focus on software aspects. Software can’t solve all the problems, but unreliable 
software will undermine an otherwise perfect hardware solution. 

General Approaches and Observations 
The computing industry now has over fifty years of experience in writing large programs. 
During that period it has developed many techniques that can be refined to play a part in 
the design and implementation of security- and safety-critical software. Perhaps the most 
important and fundamental requirement is that everyone involved in such a design effort 
must adopt a disciplined view that is entirely quality-oriented. I once had a programmer 
working for me who said “It’s a waste of time worrying about whether a loop is one-off, 
since you will find out during testing anyway.” Such an attitude is the very antithesis of 
what we need if we are to succeed in writing reliable software. 
As I am sure many of you know, I am an enthusiastic Ada supporter, and I should 
disclose that right away, though what I have to say here is certainly not Ada specific. But 
I will say that one of the advantages of Ada in this area, apart from some important 
objective features, is that Ada was designed with this kind of quality orientation in mind, 
and the culture that surrounds Ada tends to have this emphasis. Even if you are not using 
Ada in a critical application, you will do well to borrow this mindset. As mentioned 
earlier, the Ada 95 standard has a section entitled “Safety and Security”, and even if you 
are not an Ada programmer you will find this section interesting reading. 
This may seem like a trivial observation, but in my experience the issue of culture and 
attitude is a critical one. If a team is totally dedicated to quality, it is far more likely to 
achieve its goal. Nevertheless, even the most dedicated team needs the tools and 
procedures that will help ensure success, and we will now examine some of the main 
factors that help ensure success in writing totally reliable programs. 

Programming Language Design 
In this section, we examine the influence of programming language design on the 
production of security- and safety-critical software. Of course it is possible to do 
basically anything in any programming language, and one can even prove that statement 
in some theoretical sense. However, we know from experience that the programming 
language design is definitely significant and can affect the ease of writing programs and 
demonstrating their correctness.   Let’s look at what languages need to provide, from the 
vantage points of both safety and security. 
We first note that C, Java, and C++ are not suitable languages for such critical software. 
Before you dismiss these as biased claims from an Ada enthusiast, we rush to add Ada to 
the list of unsuitable languages. What do we mean by this rather outrageous statement? 
The point is that each of these languages, in its entirety, is too complex. We can’t let 



programmers use the full power of any of these languages; even C has too much 
functionality. The considerable capabilities of modern programming languages make it 
easier to write code in the first place, but make it more complicated to demonstrate that 
the resulting code is error-free. 
So what do we need to do? The answer is that for any of these languages we need to 
choose an appropriate subset (or subsets), so that we write our programs avoiding 
features with overly complex semantics. For instance, in Ada, we most likely avoid using 
the full power of the tasking model. In C, we exclude some of the library routines which 
are unlikely to be certifiable in a safety-critical environment. For C++ we avoid the 
complex use of templates. For Java, we avoid the use of dynamic features that allow the 
program to modify itself while it is running. (Of course, there are issues besides size that 
can interfere with a language’s ability to support safety- or security-critical development.  
For example, C has a number of error-prone features that can hinder a program’s 
readability.  If we see the construct “if (X=Y) …” are we sure that the programmer 
really meant to assign Y to X, and not compare the two for equality?) 

The exact choice of the set of features to be used is a challenging language design task, 
and the base language may be more or less helpful in this process. Ada provides 
considerable flexibility; the built in notion of pragma Restrictions allows the 
programmer to choose the features to exclude on an a la carte basis, and pragma 
Profile facilitates the standardization of common sets of restrictions.  Another example 
of a language subset intended for critical applications is MISRA C: 

www.misra-c2.com 
And a further example is the SPARK Ada subset from Praxis High-Integrity Systems: 

 www.praxis-his.com/sparkada 
which we will talk about in more detail later. These examples show that coherent subsets 
can be designed that makes the use of the language more effective for safety- or security-
critical purposes. The MISRA group is currently designing an analogous subset of C++, 
to be called MISRA C++. 

What features should we look for in a language to be used for safety- or security-critical 
programming? Most obviously we want to favor compile time checking so that we can 
find as many problems as possible at compile time rather than at run-time. Ada is an 
example of a language that is designed with this criterion in mind. Programmers learning 
Ada often comment that it is hard work to get the compiler to accept a program, but once 
the program compiles successfully, it is far more likely to run correctly the first time than 
an analogous program in C or C++. Ada achieves this effect in part by providing a much 
more comprehensive type system. For example, users can define their own floating-point 
types distinct from the built-in ones, allowing the compiler to check (at compile time) 
that you are not doing something that makes no sense like adding a length to a velocity.  
With less type-safe languages (including C, C++ and Java) such errors would only be 
detected during testing. 

Another important issue is run-time checking. Again, using Ada as an example, there are 
many run time checks that are required to raise exceptions if they fail.  This is in contrast 
with C and C++, where (for example) out-of-range array indices are not detected, leading 



to the well-known buffer overflow problem that is the source of so many insecurities. As 
any Ada programmer knows, these checks and resulting exceptions are enormously 
valuable in finding errors in the early stage of testing, rather than later on in the 
development process. The issue of whether such checks should be suppressed in the final 
product is an interesting one. From a pure reliability point of view, it is preferable to 
demonstrate statically that a program is free of any possibility of run time errors, which 
argues against including the checks. On the other hand, run time checks can provide an 
important extra measure of security-oriented checking. 

Let’s look at an example from the world of voting machines. Typical voting machines 
record the results on some kind of magnetic medium, such as a flash memory card. 
Clearly one important criterion is that the vote total for each candidate is zero before the 
election starts, and we expect the software to check this. In one well-publicized case a 
machine performed such a check, but did so by summing the votes for all the candidates 
and then checking that the total was zero. Unfortunately, there was nothing in the 
program to prevent negative numbers of votes (a good guess is that this software was 
written in C, and the relevant variables were signed int variables). Quite easily someone 
discovered that the card could be preloaded, for example with -1000 votes for candidate 
A, and +1000 votes for candidate B, and the test for a zero total worked. 

Now obviously this is a bug, but the key to security is multi-layered redundancy so that 
errors like this get caught somewhere along the line. If this software had been written in 
Ada, the programmer would have been forced to consider an appropriate range for the 
relevant variables and would have probably written something like 
    type Vote_Count is range 0 .. 100_000; 
    --  Vote count cannot be negative, and anything more than 100,000 
    --  votes on a single machine is not realistically possible. 

A variable of type Vote_Count has an integer value that must be at least 0 and no greater 
then 100,000.  Under the scenario described above, when the initial vote counts were read 
in, the attempt to pre-load with -1000 would raise a run time exception. At worst this run 
time exception would not have been anticipated, causing the system to shut down, but it 
is much preferable to have the machine fail (and, e.g., cause a reversion to paper ballots) 
than to silently record wrong votes. 
Though we have emphasized simplicity in language subset selection, we nevertheless 
have to recognize that security- and safety-critical applications are getting more complex, 
and these requirements must be accommodated. We mentioned that Ada’s full tasking 
capabilities are not appropriate for safety- or security-critical applications. However, 
support for multi-tasking is becoming more and more important in these areas. One of the 
important additions to Ada 2005 (the latest version of the Ada language) is the Ravenscar 
tasking profile which is specifically intended for high-integrity systems including those 
with safety- or security-related requirements: 

www.stsc.hill.af.mil/crosstalk/2003/11/0311dobbing.html 

This article provides an excellent introduction to the Ravenscar profile, with some useful 
insights into the design criteria and usage. Another interesting effort is the Real-Time 
Java activities currently underway.  This work is an attempt to address a number of 



problems that interfere with Java’s use in real-time applications (e.g., inadequacies in the 
Java thread model, and unpredictability from Garbage Collection). For details, see: 

www.embedded.com/showArticle.jhtml?articleID=16100316 

The choice of language is always a hotly debated issue. We started out by noting that any 
problem can be solved in pretty much any language, and that is certainly true. Indeed, 
safety-and security-critical applications have been written in many different languages. 
Nevertheless the language choice does make a difference, and it is no accident that Ada 
finds its widest use and support in the context of large safety-critical applications such as 
air traffic control. 

The Use of Formal Methods 
Given the desire to demonstrate that a program is completely reliable, a natural approach 
is to prove correctness in a mathematic sense. That would avoid relying on testing or any 
other subjective measures. During the 1970s and 1980s, the notion of proof of correctness 
was all the rage in academic circles, and still today there are academic computer 
scientists who assume that this is the solution to the problem of writing reliable code. 
What’s wrong with this viewpoint? Most significant is the issue of what “correct” means. 
The standard model is to first define a precise formal specification of the problem, and 
then prove that the program correctly implements this formal specification. Unfortunately 
there is a huge hole in this approach. How does one come up with the formal 
specification? For small academic problems, like sorting an array of numbers, it is 
tractable to write down a formal specification in an appropriate language and then 
construct a mathematical proof that a given program meets this specification. In order to 
actually have confidence that the proof is correct, it is necessary to verify the proof using 
a mechanical process, but that is also quite feasible for small cases. 

But how about large applications? First of all there are aspects of large programs that are 
just not easy or even possible to formalize. For example, a pilot’s cockpit must present a 
user-friendly interface. The notion of “user-friendly” is hardly a formal one. Another 
problem is that for a large program, the specification is itself a huge document. 
Furthermore it is written in a formal specification language that may be harder for many 
people to read than a normal program in a conventional programming language. How 
does one know that the specification itself is complete and consistent? In fact we don’t, 
and the problem of writing a correct program has simply been transformed to the 
(arguably more difficult) problem of writing a correct specification. 

For these reasons, the notion of proving entire large applications correct has largely 
disappeared. That’s particularly true in the U.S., where typical academic programs are far 
more likely to offer courses in Unix Tools, and Web Programming than in formal logic 
and proof of correctness. 
So is this approach a dead end? Not at all! Although proof techniques and formal 
methods/tools are not the only answer, they can still play a very important role. This 
seems to be more appreciated in Europe than in the U.S.; for example, the U.K. Ministry 
of Defence standard for safety-critical programs requires the use of formal methods 
(although it is not very specific on what this means). So it is perhaps not surprising that a 
British company, Praxis High Integrity Systems – www.praxis-his.com – is one of the 



leading practitioners in the area.   Praxis has shown that, although total proof of 
correctness might not be feasible, proving that specific properties hold for a given 
program is both useful and practicable. An example is the issue of dealing with 
exceptions.  Ada defines a number of run time conditions that cause exceptions to be 
raised (such as an array index out of range). An exception occurrence generally 
corresponds to an error, and we certainly don’t want a safety- or security-critical program 
to contain such errors. Proving that a program is free of any possibility of exceptions is a 
well-defined, tractable problem that has actually been solved for non-trivial software. For 
details, see: 

www.praxis-his.com/pdfs/Industrial_strength.pdf 

In order to construct such proofs, it is essential that the program be written in a relatively 
simple, precisely-defined language. For this purpose, Praxis has designed SPARK, a 
subset of Ada that is enhanced with static annotations that, for example, specify which 
variables can be accessed where. The SPARK Examiner tool verifies these conditions, 
and other Praxis tools allow the proof of specific properties of a program. The lesson 
learned is that formal methods and proof tools are not just an academic exercise, but are 
usable in practice as an important tool in the arsenal of the safety-critical programmer. 
Let’s apply these ideas to our previous example of voting machine software reacting to 
potential tampering (negative vote counts). As we saw, the run time checks would cause a 
failure here, but really the programmer should anticipate this potential insecurity and deal 
with it cleanly. 

Our model Ada implementation of this software would have a statement similar to: 
   Candidate_Count (Candidate_Number) := Read_Initial_Value_From_Card; 

Where Candidate_Count is an array, Candidate_Number is an index into this array, and 
Read_Initial_Value_From_Card is a function that retrieves the pre-stored vote count 
for the given candidate. 
Static analysis of this statement would show that a check was needed to ensure that the 
value read from the card met the range constraint for a candidate count, and hence 
excluded negative values. But an attempt to prove that the program could not raise any 
run-time exceptions would fail, because the function call might indeed return a negative 
value. As a consequence it is necessary to insert an explicit test that the returned value is 
in the expected range.  If this check fails, the program could then display an appropriate 
diagnostic noting that the inserted card was corrupted, requiring the election official to 
obtain a new card, or reinitialize the existing one. 

Testing, Testing, Testing 
If we cannot in practice prove all the properties that we need to demonstrate, how can we 
ensure the program’s safety? One answer is given in the title of this section. Admittedly, 
generations of programmers have been taught the simple observation that testing can 
never demonstrate the absence of bugs; it can only show their presence. This is certainly 
true from a theoretical point of view, but still, we definitely put more trust in a program 
that has been tested than in one that has not, and the more thorough the testing, the more 
we trust it. 



In practice, are there testing approaches that are sufficiently thorough that we are willing 
to literally risk our lives on the resulting demonstration that there are no known 
problems? That’s an enormously significant question. 

The DO-178B standard, used by the FAA to certify commercial aircraft avionics systems, 
provides an affirmative answer through a comprehensive testing-based approach 
comprising two major elements.  It first specifies requirements on generating systematic 
functional tests. These tests must exercise all functional aspects of the program, at all 
levels of abstraction. The tests are derived in general terms from the problem statement 
and specification, and at a more detailed level from the actual code of the program, to 
make sure that every detail of the logic works correctly. 

DO-178B then requires full coverage testing: the test suite must cause every statement in 
the software to be executed at least once. That of course doesn’t demonstrate correctness, 
but statements that have never been executed do not inspire much confidence. That may 
seem like an obvious and simple observation and requirement, but in practice, most large 
non-safety-critical programs are not tested in this way, even though tools are available to 
help automate the process. For example, the failure of the AT&T long lines system was 
due to the execution of error recovery software that had never been tested. 
The DO-178B standard has several different levels, labeled A through E, corresponding 
to different requirements for safety. Level A certification, the highest (most stringent) 
level and the one associated with life-critical systems, imposes an additional requirement 
regarding the tests for flow of control. Consider: 
 if condition then 
  statements 
 end if; 

Simple coverage testing will only ensure that the statements have been executed, but 
perhaps the test suite always has condition set to true. That’s not really enough. We also 
want to know that if condition is false, it is safe to skip the statements.  

A more complicated example is 
 if condition1 and condition2 then 
  statements; 
 end if; 

Various combinations of conditions need to be tested, to make sure that all possibilities 
are covered. But not all possible conditions need to be tested. In particular, if 
condition1 is false then we don’t care about condition2, but we would like to test the 
following three cases: 
 condition1 false 
 condition1 true, condition2 true 
 condition1 true, condition2 false 
The testing regime that ensures this is coverage called MC/DC (modified 
condition/decision coverage), and there are tools to enforce the requirement that the set of 
tests include all cases. For additional information, see: 

www.dsl.uow.edu.au/~sergiy/MCDC.html 



which contains a very thorough bibliography on this technique. 

An interesting issue is which version of the program to analyze through coverage testing: 
the source code or the object code. We can’t fully trust compilers because they are far too 
complex to be themselves fully certified (or “qualified as development tools”, in DO-
178B parlance). So what should we do? There are two approaches. One is to conduct all 
testing at the object code level. (This is for example, the approach used by the Verocel 
tools, see: 

www.verocel.com/do178b.htm 

for details.) The other approach is to perform coverage testing at the source code level, 
but then it is necessary to demonstrate full traceability between the source program and 
object program. Both approaches have been used successfully, and both have their 
advocates (at AdaCore we have seem some fierce arguments between these two schools 
of thought in some of the projects we have worked on). 

It must be emphasized that DO-178B is not simply a mindless set of objective rules to be 
applied or checked. At the heart of the process are humans exercising judgment. These 
DERs (Designated Engineering Representatives) are independent authorities responsible 
for ensuring that the rules have been followed to the letter and in spirit. They are the 
“building inspectors” of the critical software engineering industry, and their extensive 
experience helps to make sure that the standard works in practice. 
How effective is the testing regime that DO-178B imposes? The pragmatic answer is that 
it is rather successful. Remember that software need not be 100% guaranteed as totally 
error free. Rather it must be hazard-free (i.e., errors cannot compromise safety), and thus 
reliable enough so that it is not the weak link in the chain. If we take commercial avionics 
as an example, many lives have been lost due to various hardware failures on scheduled 
commercial flights, but no lives have been lost (as far as can be determined) as a result of 
software bugs. That’s an impressive record. Of course there can always be a first time, 
but so far the industry (using DO-178B) has done a good job. 
However, a good job now might not be good enough in the future: as hardware speed and 
memory capacity continues to increase, applications will grow more complex to exploit 
these advances.  Software technology is trying to keep pace.  As one example, work in 
the formal methods area is attracting increased interest, which should lead to the more 
effective and widespread use of proof techniques.  As another example, programming 
languages continue to evolve, as illustrated most recently by the new Ada 2005 standard, 
introducing specific facilities that make it easier to write reliable programs.  And as a 
third example, the whole area of software testing is progressing to account for 
methodologies that have spread into common practice.  Work is underway on DO-178C, 
the eventual successor to DO-178B, and one of the major discussion items is how to 
address object-oriented techniques, which historically have not been used in avionics 
software but which are now attracting considerable attention.  We will address this issue 
in more detail in a later section. 

Testing and Security 
The previous section on testing addressed traditional safety-critical testing, but it did not 
mention security. Indeed that section is largely unchanged from last year’s paper, which 



focused exclusively on safety. So, let’s ask the question: can testing verify security? The 
answer: not really. There is a big difference between a program that is operating in a 
stand alone manner with a well defined environment, and one that is operating in a hostile 
environment with hackers attempting to derail it. Let’s look at the Microsoft Windows 
system as an example. This system is furiously tested by thousands of testers. Out of the 
box, and operating in an isolated mode, it is remarkably reliable. But connect it to the 
Internet and the world of thousands of mischievous and criminal hackers descends on 
your machine. Even with layers of security oriented software, these hackers can get 
through and cause severe damage. In the context of security considerations, Windows is a 
disappointment, and it is no surprise that Microsoft has reoriented itself to a new 
dedication to security considerations. 

Testing is simply not sufficient when it comes to security. We can realize some benefits 
from testing in which a system is deliberately subjected to attack by an army of hackers 
hired for this purpose. Indeed experts in the voting machine area have suggested that this 
approach be included in the mandated testing procedures for federal voting machines, but 
we can never be sure that the hackers on our side will find all the security flaws. 

We said earlier that no lives had ever been lost because of errors in commercial avionics 
software. That’s true, but it’s just a little misleading. There has in fact been at least one 
instance, involving a Malaysia AirlinesB777 flight from Perth to Kuala Lumpur in 
August 2005, where a software error led to a hazardous midair situation. Details on this 
incident may be found in a report from the Australian Transport Safety Bureau: 

www.atsb.gov.au/publications/investigation_reports/2005/AAIR/aair200503722.aspx 
Luckily the only effect in this case was a very bad scare for the passengers and crew, but 
the existence of this error was worrisome. The question arises as to whether evil-
intentioned individuals could have exploited such an error to cause real damage. 

While testing will always be a useful component, not only in finding errors, but in 
building confidence (the general public will always be more confident in systems that 
have been tested, and they have good reason for this point of view), it must be 
acknowledged that testing by itself is not going to be sufficient. 
The current situation with voting machines is that commercial companies develop these 
systems (including the software) internally, and keep everything secret. The software’s 
source code is inaccessible to outsiders, and there is no information on how it was 
developed. Then the machine is shipped to a testing lab. If it passes the lab’s tests, then it 
can be certified for use. 
In other words, for voting machines, society is indeed relying only on testing (actually the 
weak “black-box” testing in which the testers do not have access to the source code), and 
hoping for the best on all other fronts. This cannot be a successful approach and can 
never demonstrate that the machines are reliable or secure. This would be true even if no 
malfunctions had been detected. In fact there are numerous examples demonstrating 
severe vulnerabilities in these machines, further showing that testing alone is not going to 
be sufficient. Formal methods, and other end-to-end development techniques, are 
necessary. 



The Use of Tools 
When we are aiming at perfection, we need to take full advantage of all the tools at our 
disposal. We can achieve much by through careful reading of programs by software 
experts, but often we do even better by using automated tools. There are many general 
categories of such tools. 
Static analysis tools analyze the structure of a program to detect potential errors and to 
provide information that will help find problems before they cause trouble. An example 
of such a tool is CodeSonar from Grammatech: 

www.grammatech.com/products/codesonar/overview.html 

This tool automatically finds errors such as buffer overruns in C++ programs. There are 
many such tools from many suppliers. Of course no tool of this kind can guarantee that a 
program is bug free, but each analysis identifying the absence of a certain type of error 
increases one’s confidence in the overall correctness of the software.  It is the sum total 
of this information and effort that leads us to be willing to get on the plane that will be 
deploying the software at the end of the process. Choosing an appropriate set of tools and 
developing experience in their use can be as important as language and compiler 
selection. Note that the tool set is also likely to be language dependent. For example, in 
Ada there is less concern with buffer overflow, since the built-in language semantics and 
exception mechanism will detect such problems at run time. 

Compiler vendors often provide useful suites of such tools, and evaluation of the full tool 
suite should be an important part of the selection process for languages and compilers. 
For example, my company, AdaCore, provides a complete suite of tools, including a 
static stack usage analyzer that addresses the specific and important requirement that a 
program does not cause any stacks to overflow. 

There are many different kinds of tools available for analyzing program properties such 
as thread/task schedulability, worst-case timing, run-time use of storage, freedom from 
race conditions, and freedom from unwanted side effects.  There are also other tools that 
help in automating the testing process, generating program metrics, etc. An important 
part of the preparation for a project with safety- or security-critical requirements is to 
investigate and acquire a coherent set of tools. An Integrated Development Environment 
(IDE) can be used to organize such a set of tools. For example, the GNAT Programming 
Studio (GPS) product from AdaCore provides a menu-driven IDE giving access to the 
full set of tools that a project will use, and there are many other such products. 

Again, tools that just check for internal consistency are not sufficient to verify safety or 
security properties of a program. That requires a more systematic approach in which 
specifications and formal verification play an important role. The SPARK language and 
its associated tools give an important indication of what can be achieved. 

Object-Oriented Programming and Safety-/Security-Critical Systems 
Object-Oriented Programming (“OOP”) has become an important methodology for 
modern programmers and is supported in a wide variety of languages including C++, 
Java, and Ada. In this section we will look at the special considerations of using these 
methods in security- and safety-critical environments. 



The notion of OOP is somewhat ill-defined. On the one hand it refers to a design method 
in which objects communicate via message passing. Such an approach in and of itself 
poses no special problems or safety/security concerns. On the other hand, it also refers to 
the use of a set of features in programming languages, typically comprising three 
important components: 

• The ability to extend existing types by adding new data elements 

• Automatic inheritance of existing methods when types are extended, along with the 
ability to override such methods and/or add new ones 

• Dynamic dispatching, entailing automatic choice of the right method at run time, 
based on the data type of the object referenced by the method’s argument 

The first two features offer no special obstacles in a security- or safety-critical 
environment, and it is worth noting that they are useful even without dynamic 
dispatching. For example, a type and its associated methods may be defined in a library. 
An application can then import this type, extend it to specialize it for a particular purpose, 
and then use the inherited operations on this type. In Ada, one can obtain the type 
extension and method inheritance/overriding capabilities, and exclude dynamic 
dispatching, by specifying pragma No_Dispatch, which, as its name implies, checks that 
a program does not use dynamic dispatching. An Ada compiler can recognize this pragma 
and enforce the restriction, as well as improve the code knowing that this restriction is in 
place (for example, by eliminating dispatch tables). Similar switches or pragmas could be 
implemented in other languages, though they would not be part of the standard. 

Now let’s look at dynamic dispatching. As background, note that the typical 
implementation is a table of pointers to methods, where an index into this table identifies 
the method that is to be invoked. However, that approach raises two safety/security 
issues. First, what if the table gets corrupted somehow? The indexing / dispatching 
operation could then cause a wild jump. Now of course such corruption would not be 
expected in a certified program (although the demonstration of correctness of the dispatch 
table raises some nontrivial issues). Still, as will be described below, indirect calls make 
safety certification more difficult: to ensure the integrity of the control flow we need to 
prove properties relating to data access. In the security context, we know how a table 
might get corrupted, namely by an evil corrupter deliberately attacking the system from 
outside. By changing the address in one dispatch table, a bad guy can compromise the 
entire behavior of a program. 

The second problem with dynamic dispatching is more significant. In a sense dynamic 
dispatching is all about not having to know what routine you are calling. But certification 
and coverage testing is all about knowing and checking the control flow of your program. 
What exactly needs to be done for a dispatching call? 
One possibility would be to treat each call as though it were a case statement, with a 
branch for each routine that might be the target of the dispatching call. This translation 
seems completely fair, but the trouble is that only a small subset of the possible targets 
might actually be invoked. The uncalled routines would then be deactivated code (code 
that can never be executed), raising DO-178B certification issues. 



A simpler approach is to treat the dispatching call as a call to a single routine that 
contains such a case statement. In this approach all calls to a given dispatching routine 
will share a single case statement. On the positive side, one can argue that the program 
could have been written in this way in the first place and thus that traditional testing is 
sufficient. On the negative side, coverage testing is really only showing that each method 
is used somewhere, and thus the possible flows of control are not being completely 
verified. 
The fact that the program could have been expressed in an alternative style is not a 
convincing argument. The testing schemes implied by DO-178B are not perfect (no 
testing scheme could be), but they work well in practice. However, they can in principle 
be subverted by a programmer concentrating on the letter of the standard, and ignoring its 
intent. Here is a way of essentially removing if statements from a program. In Ada 
syntax, replace each if statement: 
 if condition then 
     then-statements 
  else 
     else-statements 
 end if; 

with the semantically equivalent procedure call: 
 Eval_If (condition,  
           then-statements-proc'Access, 
           else-statements-proc'Access); 

where the second and third arguments are now pointers to functions that will execute the 
appropriate statements. The Eval_If procedure itself has the form: 
 procedure Eval_If (Cond : Boolean; T, E : access procedure) is 
 begin 
  if Cond then 
   T.all; 
  else 
   E.all; 
  end if; 
 end Eval_If; 

(The “ptr.all” notation means an invocation of the procedure designated by ptr.) Now 
we have only one if statement in the entire program, the one inside this routine. MC/DC 
analysis, which is intended to ensure that all conditionals are tested thoroughly, is now 
subverted. Coverage testing now only proves that some if somewhere is true and some 
if somewhere is false. 
This is pretty clearly cheating. Even though it meets the letter of the certification 
requirements, it does not meet the spirit, and we suspect no DER will allow this or any 
similar subversion. 
So here is the question: is it cheating if dispatching calls are converted to a single shared 
case statement? The answer is not yet known. At least one system has been certified 
using this approach as far as we understand, but other projects are analyzing this issue 
and have not yet reached a decision. The lesson to be learned here is that dynamic 
dispatching is best avoided if possible in applications that need to be certified against 



requirements such as in DO-178B. If dynamic dispatching must be used (for example if 
you are planning to reuse some OOP code in a safety-critical application), you need to 
deal with the resulting issues and follow the evolving state of the art in this area. 

An excellent summary that deals with the whole issue of certification of object oriented 
software can be found in: 

www.faa.gov/aircraft/air_cert/design_approvals/air_software/oot/ 

This references a four volume set Handbook for Object Oriented Technology in Aviation, 
which is a “must-read” for anyone considering the use of object oriented techniques in 
safety-critical programs. 

Conclusion 
As we have noted earlier, the certification of safety-critical software is at this stage a well 
understood activity, and has allowed us to repeatedly produce large scale systems that are 
safe and reliable. This technology will continue to improve in the future. However, the 
introduction of security concerns means that we have to go beyond these techniques. 

Of course, not every one is working on safety critical systems. However, as we noted at 
the start of this paper, nearly everyone is in favor of reliable software, and it seems to us 
that many of the techniques that have been developed in the security and safety critical 
area deserve wider use. When eBay went down for nearly a week at one point due to 
software problems, causing the valuation of the company to lose several billion dollars, I 
wrote a note to the founders of eBay suggesting that since they had a huge company 
depending on one relatively straightforward program, it would make sense to adopt a 
much more strenuous view of reliability. Lives were not at stake, but a few billion dollars 
is real money! I did not receive a reply, but I think in the future that we will come to 
demand a level of reliability and security in a wide variety of critical programs. Indeed 
the eBay program can be considered a good example of software which should be treated 
as security critical given its accumulation of personal data, and its responsibility for 
billions of dollars in transactions. 
Reliability, safety, and security are hard goals to achieve, and require up-front attention in 
terms of software architecture, design and implementation.  The choice of appropriate 
programming languages (in fact, programming language subsets), development tools, and 
verification methods that go beyond testing and include formal methods, can help make 
the challenge manageable. 


