
Altera Corporation 1
AN-311-2.0 Preliminary

Application Note 311

ASIC to FPGA Design
Methodology and Guidelines

Introduction The cost of designing ASICs is increasing every year. In addition to the
non-recurring engineering (NRE) and mask costs, development costs are
increasing due to ASIC design complexity. Issues such as power, signal
integrity, clock tree synthesis, and manufacturing defects can add
significant risk and time-to-market delays. FPGAs offer a viable and
competitive option to ASIC development by reducing the risk of re-spins,
high NRE costs, and time-to-market delays.

Programmable logic has progressed from being used as glue logic to
today’s FPGAs, where complete system designs can be implemented on
a single device. The number of gates and features has increased
dramatically to compete with capabilities that have traditionally only
been offered through ASIC devices. Figure 1 illustrates the evolution of
FPGA applications that have led to higher density devices, intellectual
property (IP) integration, and high-speed I/O interconnects technology.
All of these elements have allowed FPGAs to play a central role in digital
systems implementations. With the availability of multimillion-gate
FPGA architectures, and support for various third-party EDA tools, you
can use a design flow similar to that used for ASIC devices to create
system-on-a-programmable-chip (SOPC) designs in FPGAs.

With the device sizes and architectures that are available today, FPGAs
can effectively implement systems that were once possible only in ASICs.
Because of their programmable capability, FPGAs reduce the time to
bring up a system as well as minimize the financial risk involved with
new designs. Some of the newer FPGA devices have resources such as
on-chip transceivers for different physical layer (PHY) protocols,
providing the capability to interface with external memories and
implement large blocks of internal memory. All of these aspects help to
reduce device count on a board, in turn bringing down the cost associated
with the product.

The Cyclone® series of FPGAs provide a low-cost alternative for
applications that currently use low-to-moderate-density ASICs. A rich
feature set makes the Cyclone series of FPGAs suitable for a broad range
of applications including displays, wireless communication, video and
image processing, automotive, and military at a cost per device that is
comparable to ASICs.

October 2007, ver. 2.0

2 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Introduction

The Stratix® series of FPGAs provide a good alternative to more complex
ASIC designs. These are high-performance, high-end FPGAs that have
resources such as large internal memory, fast external memory interfaces,
on-chip transceivers, and a large number of internal clock networks. The
Stratix GX series of devices and Arria™ GX devices have on-chip
transceivers that support a number of industry-standard serial interfaces
in addition to other logic resources. The Stratix and Stratix II FPGAs also
provide a cost effective migration option for going to volume production
with HardCopy® and HardCopy II structured ASIC offerings from
Altera.® By choosing to go to HardCopy, you can utilize the
programmable feature during the design, verification, and prototyping
stages, reduce the time to market, and get the cost benefit when the
volume ramps up.

f For more details about HardCopy and HardCopy II, and for design
guidelines about targeting the HardCopy series of devices, refer to the
HardCopy Series Handbook, volume 1, and the Altera Product Selector Guide.

This document is intended for ASIC designers considering FPGA
implementation of their designs, either for prototyping or for production.
This application note gives some guidelines for efficient FPGA
implementation of their designs. It also touches upon the salient features
of Altera’s Quartus® II software that make it easy for building true
system-on-a-programmable-chip solutions. Comparisons between
typical FPGA and ASIC design flow are also made whenever applicable.

http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/sg/product-catalog.pdf

Altera Corporation 3
Preliminary

FPGA Financial Benefit ASIC to FPGA Design Methodology and Guidelines

Figure 1. Application of FPGA Devices from 1985 to the Present

FPGA Financial
Benefit

Altera provides an online FPGA vs ASIC Project Cost Calculator so you
can see the cost comparisons between ASIC and FPGA implementation
before beginning your project. It allows you to estimate the cost trade offs
between ASIC and FPGA implementations.

ASIC and FPGA
Design Flows

Typical ASIC and FPGA design flows are shown in Figure 2. The
back-end design of an ASIC device involves a wide variety of complex
tasks, including placement and physical optimization, clock tree
synthesis, signal integrity analysis, and routing using different EDA
software tools. When compared to ASIC devices, the physical, or
back-end design of Altera FPGA devices is very simple and is
accomplished with a single software tool, the Quartus II software. The
Quartus II software is a fully integrated, architecture-independent
package offering a full spectrum of logic design capabilities for designing
with Altera FPGAs.

Glue
Logic

Complex
Control

SOPC
Design

Equations
Schematics

Control
Logic

Synthesis
Macrofunctions

Second-generation Synthesis
IP Megafunctions

Block-based
Design

Electronic System
Level Design

ESL
Design

C2H

Increasing
PLD

Complexity

1985 1990 2003 20061995

http://www.altera.com/products/devices/cost/cst-cost_step1.jsp

4 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines ASIC and FPGA Design Flows

By using Altera FPGA devices in place of ASICs, you can potentially
reduce the complexity of the design process as well as significantly
reduce cost. This document discusses and compares each of the tasks
involved in the design flows for both FPGA and ASIC devices.

Figure 2. A Comparison of ASIC and FPGA Design Flows

Design
Specification

Design
Development/
Physical and

Power Planning

Functional
Simulation

Synthesis/Physical
(Area, Power, and

Timing)

Test Synthesis
(Scan Insertion,
BIST Synthesis)

Placement and
Physical

Optimization

Clock Tree
Synthesis

Routing

Signal
Integrity

Sign-off

Timing and
Power Analysis

Formal
Verification and
Timing Analysis

Formal
Verification and

Post-Layout
Timing Analysis

Skew and Timing
Analysis

DRC/ERC, Manual
Layout Fixes,

Hold Time Fixes

IR drops, X-talk

Functional
Simulation

Synthesis
(Area, Power,
 and Timing)

ASIC
Design Flow

FPGA
Design Flow

RTL
(Verilog HDL

IP Instantiator)

Design
Specifiation

Project Planning,
I/O Assignments

and Analysis,
Preliminary Power

Estimation

TasksTasks

RTL
(Verilog HDL

IP Instantiator)

Create a
Floor Plan

Power Analysis

Place and Route
Static Timing

Analysis

In-System
Verification

In-System
Verification

Formal
Verification

Quartus II
In-System

Debugging Tools

Board-Level
Signal Integrity

Sign-off

Altera Corporation 5
Preliminary

Design Specification ASIC to FPGA Design Methodology and Guidelines

Design
Specification

The design specification stage includes the following activities:

■ I/O specification
■ Global clocks and their frequency requirement
■ Memory requirements
■ Verification methodology
■ Selection of the FPGA family and device, including the speed grade

I/O Specification

Altera devices support a wide variety of I/O standards. I/O resources
vary depending upon the device and family. When you are designing an
ASIC, you can instantiate I/O pads for a design by specifying the
technology I/O buffers in a Verilog HDL or VHDL file to perform
simulation and synthesis. At the foundry, the I/Os specified in the RTL
are replaced with the technology I/O pads.

In an Altera FPGA design flow, you choose the type, location, and I/O
standard for all the pins in your design using the Pin Planner, which is
part of the Quartus II software.

The Pin Planner lets you validate your I/O assignments by performing
legality checks on your design’s I/O pins and surrounding logic. These
checks include proper reference-voltage pin usage, valid pin location
assignments, and acceptable mixed I/O standards.

As part of I/O planning, especially with high-speed designs, you should
take board-level signal integrity and timing into account. When you have
an FPGA device with high-speed interfaces on a board, the quality of the
signal at the far end of the board route, as well as the propagation delay
in getting there, are vital for proper system operation.

The Quartus II software provides features to take these factors into
consideration, making the software “board-aware.” The Quartus II
software can take into account board routing and external devices to
generate advanced timing reports and board simulation modeling files.

The Quartus II software provides the following methods of signal
integrity analysis:

■ I/O timing using a default or user-specified capacitive load with no
signal integrity analysis (default)

■ The Enable Advanced I/O Timing option utilizing a user-defined
board trace model to produce enhanced timing reports from
accurate, “board-aware” simulation models

■ Full board routing simulation in third-party tools using IBIS or
HSPICE I/O models generated by the Quartus II software

6 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Design Specification

f For additional information about using the Pin Planner, refer to the I/O
Management chapter in volume 2 of the Quartus II Handbook.

Some Altera device families have dedicated circuitry associated with I/O
cells to support multiple channels of serial transceivers. The on-chip
transceiver circuitry provides physical coding sublayer (PCS) and
physical media attachment (PMA) implementation for PHY protocols,
such as PCI Express (PCIe), Gigabit Ethernet, XAUI, SPI, and SONET. By
using an FPGA that has integrated transceivers you may be able to reduce
the overall device count on your boards and reduce cost.

Number of I/O Pins

Determine the exact number of I/O pins used in your design. With this
information, you can select a specific device and package.

Location of I/O Pins

Carefully analyze the impact of the I/O pin locations on the board layout
to minimize potential problems. On an FPGA, you must know the I/O
standards that are supported by a device so that modules in the design
that require a certain I/O standard can be physically placed near the
corresponding I/O bank. Some Altera IP cores (such as PCIe) specify
pinout constraints automatically that may be needed to meet any special
requirement. Use the Pin Planner to specify the locations for all other
I/Os. If you anticipate a change in the target device at a later time in the
design cycle, the Pin Planner also helps you plan for device migration.

f To learn more about the location of I/O banks and supported standards
within an I/O bank for a specific device, see the corresponding Altera
device handbook.

I/O Timing

I/O timing is affected by the I/O standard and the drive strength. In
addition, to meet I/O requirements, Altera FPGAs have I/O pins with
fast, dedicated registers. The device uses these registers, depending on
the clock setup time (tSU) and clock-to-output delay (tCO) requirements.
You can enable the use of fast I/O registers by setting the Fast Input
Register and Fast Output register options using the Assignment Editor in
the Quartus II software.

http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf

Altera Corporation 7
Preliminary

Design Specification ASIC to FPGA Design Methodology and Guidelines

1 Redefine I/O specifications for every new design because
different FPGA families may support different I/O standards.
Even within a device family, different devices have different
numbers of I/O pins.

Starting with the Quartus II software version 7.0, you can use
the Advanced I/O Timing feature to specify the board
parameters for each I/O individually so that the timing analysis
is very accurate.

f For more details on this feature, refer to the Quartus II TimeQuest Timing
Analyzer chapter in volume 3 of the Quartus II Handbook.

Number of Low-Skew Signals

Identify the number of clocks needed in your design in order to choose
the FPGA for your implementation. There is usually an upper limit to the
number of different low-skew signals available in a device. Clock tree
insertion is a manual process in an ASIC flow, whereas in an FPGA flow
it is an automatic process. In most cases, the Quartus II software can
automatically choose which low-skew resources to assign to which
signals. In addition, it can also determine which signals should be routed
on low-skew resources. However, you can make these assignments
manually.

Altera FPGAs provide a variety of clocking resources in each device.
Clocks that are to be used in all regions of the chip can be routed over
global clock nets, which are guaranteed to be low skew. The global clock
networks span the entire general purpose logic arrays, feeding all
architectural structures. Internal logic, PLL outputs, or device inputs may
drive these low-skew global clock resources. You can also use these
low-skew global resources for other device-wide signals with large
fan-outs, such as asynchronous resets or clock enables. The number of
device wide low-skew resources available is device dependent. The
Stratix devices provide fast regional clocks in addition to the global
low-skew resources. Similarly, the Stratix II devices provide a
hierarchical clocking structure consisting of global clocks (GCLKs),
regional clocks (RCLKs), and peripheral clocks (PCLKs). You can use a
combination of these low-skew signals to route clocks and other high
fan-out signals in your design.

In addition to the clock networks described previously, the Stratix GX
series of devices feature separate clock distribution resources that connect
directly to the clocking resources of the device logic array. This
architecture makes it flexible for reference clock generation, clock domain
translation, and support of multi-channel functionality.

http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

8 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Design Specification

1 The Quartus II software turns off unused clock networks to
reduce power dissipation in the device. It can also disable
unused portions of clock networks for Stratix II and Stratix III
devices, and can optimize the placement to minimize the
portion of the clock network used to further reduce power.

f For more information about regional clocks and fast regional clocks,
refer to the Area and Timing Optimization chapter in volume 2 of the
Quartus II Handbook.

For more information about the clocking resources such as GCLK, PCLK,
and RCLK within a specific device, refer to the appropriate device
handbook.

For more information about clock tree synthesis and clock requirements,
refer to “Clock Tree Synthesis” on page 28.

Memory Requirements

You must identify embedded random access memory capacity and speed
requirements early in the design specification process. The size of
embedded memory you can implement in an FPGA depends on the
selected device. The Stratix series of devices support between 4 MBits and
9 MBits of embedded memory. The Cyclone series of devices support
between 288 KBits to 3.8 MBits of embedded RAMs.

f Refer to the appropriate device handbook for details about available
embedded RAM.

Memory capacity in ASIC technology is higher than in FPGA technology,
but integrating and testing memory in an ASIC device requires
significantly more work, because it generally involves instantiating a
special module in the register transfer level (RTL) design, as well as
creating custom circuitry around the RAM blocks for testing. For Altera
FPGAs, the Quartus II software allows you to arrange memory blocks to
meet the system requirement automatically without having to create any
special blocks for testing. The In-System Memory Content Editor in the
Quartus II software helps verify the contents of the memories in the
FPGA when you are in the test phase.

f For more information about how to address your memory requirements
in Altera FPGAs, refer to “Specification of External and Internal
Memory” on page 17.

For more details about the memory organization in a specific device,
refer to the appropriate device handbook.

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Altera Corporation 9
Preliminary

Design Specification ASIC to FPGA Design Methodology and Guidelines

FPGA Device Sizing

Estimate the size of your design so that you can arrive at the power and
heat dissipation requirements. After the size of the logic is estimated and
operating frequencies are specified, the approximate size and speed
grade of the device can be selected.

Altera FPGAs also support vertical migration within the same package.
In this context, you can migrate between devices whose dedicated pins,
configuration pins, and power pins are the same for a given package
across device densities. For example, you can migrate a design from an
EP1S10B672C6 device to an EP1S20B672C6 device in the 672-pin package.

Phase-Locked Loop (PLL) Requirements

Inserting PLL circuitry in an ASIC device is typically a manual process in
which you instantiate special PLL blocks in the design. In the Altera
FPGA flow, you can create configurable PLLs using the MegaWizard
Plug-In Manager, which is available within the Quartus II software. You
can control PLL parameters such as phase shift, clock switchover, and
PLL bandwidth using this MegaWizard. In the PLLs available in Altera
devices, each output of the PLL can be programmed independently,
creating customizable clock frequencies that are independent of other
input or output clocks. Inherent jitter filtration and fine-grained control
of the configurable range help you generate the high-performance
precision clocks required in your system. The number of PLLs available
in FPGA technology is usually limited, whereas PLL quantities are
virtually unlimited in ASIC technology.

f For more information about the number and type of PLLs supported in a
specific device, refer to the appropriate chapter on Clock Networks and
PLLs in the Altera device handbooks.

Verification Methodology

Most ASIC projects start with an exhaustive verification plan and design
specifications that are completely frozen. A similar strategy of starting a
verification plan early in the design cycle is desirable for today’s complex
FPGA designs. Decisions such as whether to use formal verification
methods should be made early. The Altera design flow supports industry
standard simulation and formal verification tools to aid you with
verification.

10 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Design Specification

Clock Frequencies

The frequency at which your design is expected to operate is an
important factor in choosing the appropriate Altera FPGA for your
design. The maximum frequency of operation is affected by several
factors, such as logic utilization, routing congestion, and the speed grade
of the chosen device.

f Refer to the appropriate Altera device handbook to determine the
maximum clock frequency for a given device and speed grade.

Number of Simultaneously Switching Outputs (SSOs)

The number and the placement of SSOs has a direct impact on the number
of power and ground pins required for an ASIC. This is usually not an
issue with an FPGA, because the placement and number of power and
ground pins is pre-determined. The Quartus II software helps you with
placement of user pins. Using I/O assignment analysis, you can check the
pin placement based on the I/O rules.

Power Requirements

The Quartus II software supports two power analysis methods. The first
tool, PowerPlay Early Power Estimator, is a spreadsheet-based tool. The
second one, called the PowerPlay Power Analyzer, is a part of the
Quartus II software. Performing preliminary power analysis, based on
the estimated logic size and speed, helps you determine the device power
requirements. This usually leads to defining the device’s cooling and
package requirements.

When you are designing an ASIC, you may have to use stand-alone
power analysis tools to estimate the power dissipation in your design,
and a very good estimate may not be available until late in the design
cycle. When you target your design to an Altera FPGA, you can use the
Early Power Estimator to get an early estimate of power dissipation in
your design. You can run the more elaborate PowerPlay power analysis
later in the design cycle. You can also optimize the synthesis and the Fitter
run to focus on reducing power consumption by turning on the Extra
Effort PowerPlay option in power driven compilation.

f The Quartus II PowerPlay Power Analyzer helps you to get fast and
accurate power consumption in your design. For more details about
using this tool, refer to the PowerPlay Power Analysis chapter in volume 3
of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Altera Corporation 11
Preliminary

Design Development ASIC to FPGA Design Methodology and Guidelines

For more details on power driven synthesis and other power saving
optimization techniques, refer to the Power Optimization chapter in
volume 2 of the Quartus II Handbook.

Design
Development

Design development includes the following steps for both FPGAs and
ASICs:

■ Top-down or bottom-up methodology selection
■ RTL coding
■ Specification of the external and internal memory
■ Synthesis

Methodology Selection

Altera’s FPGA design methodology supports both top-down and
bottom-up design methodology. FPGA design flows support modular
design approaches for bottom-up methodology, and hierarchical design
partitioning for top-down design methodology, similar to the process
used for ASIC devices. Altera’s design software also supports newer
standards such as SystemVerilog that are becoming a part of ASIC design
methodology. For team-based designs that are typical of ASIC-size
designs, the Quartus II software supports incremental compilation
methodology.

Incremental Compilation

In an incremental compilation flow, you can split a large design into
smaller partitions. Team members can work on partitions independently,
which can simplify the design process and reduce compilation time. The
Quartus II incremental compilation feature preserves the results and
performance for unchanged logic in your design as you make changes
elsewhere, allowing you to perform more design iterations per day and
achieve timing closure more efficiently.

If you want to take advantage of the compilation time savings and
performance preservation of Quartus II incremental compilation, plan
for an incremental compilation flow from the beginning of your design
cycle. Good partition and floorplan design helps lower-level design
blocks meet top-level design requirements, reducing the time spent
integrating and verifying the timing of the top-level design.

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf

12 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Design Development

f For more information about design planning and different design
approaches, refer to the Design Planning with the Quartus II Software and
the Quartus II Incremental Compilation for Hierarchical and Team Based
Design chapters in volume 1 of the Quartus II Handbook.

For further information about using different approaches in design
methodology when using third-party synthesis tools, refer to the
corresponding chapter in the Synthesis section of the Quartus II Handbook,
volume 1.

RTL Coding

RTL coding style becomes important when you target your design to an
FPGA because the resources in a device are finite. This application note
provides some coding guidelines to improve design performance by
taking advantage of the FPGA architecture.

This section provides the following guidelines for the RTL coding of your
design when you target an Altera FPGA:

■ Synchronous design practices versus asynchronous designs
■ Synchronous versus asynchronous resets
■ Gated clocks versus clock enables
■ Divided clocks
■ Using data pipelining
■ Using encoding schemes
■ Using look-ahead techniques
■ Using logic duplication
■ Using internal buses

f Only some of the RTL coding guidelines are discussed here. For more
details about coding guidelines, refer to the Design Recommendations for
Altera Devices and the Quartus II Design Assistant chapter and the
Recommended HDL Coding Styles chapter in volume 1 of the Quartus II
Handbook.

Synchronous Design Practices Versus Asynchronous Designs

Use synchronous design practices to avoid glitches and race conditions
inherent in asynchronous design. Conforming to a synchronous design
style also makes it easier to perform timing analysis and achieve timing
closure.

f For a detailed discussion about sychronous design practices, refer to the
Synchronous FPGA Design Practices section in the Design Recommendations
for Altera Devices and the Quartus II Design Assistant chapter in volume 1
of the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

Altera Corporation 13
Preliminary

Design Development ASIC to FPGA Design Methodology and Guidelines

Another problem caused by asynchronous signals is that the sampling
clock at the receiving end may be too slow compared to the initiating
clock. The slow clock at the destination may cause a transition on a signal
to be completely missed. Implement a good handshake protocol between
asynchronous blocks to ensure proper operation.

The following typical design styles contribute to asynchronous designs:

■ Gated clocks
■ Latch inferences
■ Multiple clocks
■ Derived clocks

Synchronous Versus Asynchronous Resets

An asynchronous reset is defined as a way of clearing the contents of a
register, independent of the associated clock. ASIC libraries consist of
registers with and without a built-in reset/clear pin. A register with a
built-in reset/clear pin is generally bigger than a register without one.

Many ASIC designers use registers without asynchronous reset pins to
obtain extra speed and reduce area in a design by using an external gate
on the data path of the register for a reset. When the reset is routed
through the data pin, the clock must be running when the reset is
asserted. Additionally, a synchronous reset signal is treated as any other
data signal, so no extra care is needed during the routing and timing
optimization phase.

In traditional ASIC designs, internally generated asynchronous resets
from a state machine can cause problems in scan testing. A typical
problem results from the shifting of test vectors through the flipflops of
the state machine, which triggers unintended resets. This is not an issue
for FPGAs, which do not have to be scan tested.

You can also control the asynchronous reset from an input pin on the
device. Such a reset signal should be buffered like a clock tree to reach all
of the asynchronous reset pins of all the device registers. In ASICs, a reset
tree is generated just like a clock tree. You must use static timing analysis
or use an independent start signal to prevent different state machines
from becoming out-of-sync immediately after the reset release when you
are designing an ASIC.

In FPGAs, a reset tree is already in place. All registers have a built-in
asynchronous reset, so no area savings is attained by not utilizing the
available reset capability.

14 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Design Development

Gated Clocks Versus Clock Enables

Clock gating is used in ASIC designs for power optimization. However,
gated clocks can introduce glitches and register incorrect data due to the
delay on the combinational path.

Registers in FPGAs have a clock enable pin. You can avoid clock gating
by using the clock enable pin. Using the clock enable pin to disable the
clocking of the flipflop does not mean that the flipflop is not clocked. It
means that the current state of the flipflop is clocked continuously. Using
this clock enable does not reduce the power consumption of your design.
An example of this implementation of the flipflop is shown in Figure 3.

Figure 3. A Clock Enable Pin Disabling Clocking of a Flipflop

The following RTL code segment shows how to infer a flipflop with the
clock enable shown in Figure 3.

module clock_en(in,out,clk,data_en);
input in,clk,data_en;
output out;
reg out;

always @(posedge clk) begin
if (data_en)

out <= in;
else

out <= out;
end
endmodule

f Refer to the appropriate device datasheet for device specific information
about clocking structures.

If reducing the power is the primary reason for using clock gating in your
design, you can use dedicated resources available in Altera devices to
perform clock gating. Altera FPGAs from the Cyclone III, Cyclone II,

clk

Din Q

DFF Cell

Q

CE

clk

 D

Altera Corporation 15
Preliminary

Design Development ASIC to FPGA Design Methodology and Guidelines

Stratix III, and Stratix II families have dedicated clock control blocks to
perform clock gating. Using these blocks, you can shut down selected
clock networks. Altera recommends that you use the dedicated circuitry
when available rather than using multiplexing logic structure.

1 Stratix III devices use Altera’s innovative Programmable Power
Technology, which lets you select higher performance or lower
power on a logic cell basis and reduce the overall power.

f For more details about power management with Stratix III devices, refer
to the Stratix III Power Management Design Guide.

If you must use clock gating, follow the recommended clock gating
method described in the Gated Clocks section in the Design
Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook.

Divided Clocks

Many designs require clocks generated by division of a master clock. If
you need to create a divided clock, Altera recommends that you use the
dedicated PLL circuitry for clock division. If you must use clock division
logic, make sure you use synchronous counters or state machines to
perform clock division. Using ripple clock division can make timing
analysis difficult.

f For more details on internally generated clocks, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook.

Using Data Pipelining

Because FPGAs are rich in registers, you can use the registers for a
pipelined architecture to improve the device performance without
incurring any area penalty.

1 When you pipeline your design, make sure you equalize data
and control path latency, and modify the testbenches to capture
the outputs at the right time.

Using Encoding Schemes

Almost all of today’s designs contain a number of state machines. While
designing ASICs it is common to use some sort of binary encoded state
machine to reduce area. On the other hand, FPGAs are register rich, and
using a one-hot encoded state machine reduces the combinational logic

http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/an/an448.pdf

16 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Design Development

required between different states. Because of this, one-hot encoding
generally produces better performance results for your state machines in
your designs.

Using Look-Ahead Techniques

Look-ahead techniques force a portion of the large combinational logic
function into the previous clock cycle, and forces the remaining logic
function to be performed in the next clock cycle. This technique, also
know as register balancing, balances the levels of logic between registers,
resulting in much faster execution. Thus, by splitting the combinational
logic over two clock cycles, your logic can run faster without additional
latency.

f The Quartus II software can perform register retiming without any
changes in the RTL if the corresponding physical synthesis option is set.
For more details about setting this option, refer to the Gate Level Register
Retiming section in the Power Optimization chapter in volume 2 of the
Quartus II Handbook.

Using Logic Duplication

You can improve FPGA performance by minimizing the routing delays.
High fan-out is one of the sources of routing delays. You can reduce the
number of high fan-out registers by logic duplication. The Quartus II
software supports logic duplication as part of the netlist optimization.
You may choose to do logic duplication in your RTL as well. Some
synthesis tools might see the logic replication in the RTL code as
redundant, and may optimize the replicated logic. Synthesis attributes
may be needed to keep the intended replicated logic.

f For further information about the available Physical Synthesis
Optimization options, refer to the Netlist Optimization and Physical
Synthesis chapter in volume 2 of the Quartus II Handbook.

Refer to the Quartus II Integrated Synthesis chapter in volume 1 of the
Quartus II Handbook for more details about register duplication and
register preservation attributes for synthesis tools.

Using Internal Buses

Internal buses in ASIC devices allow various internal modules and
external devices to communicate. It is not good design practice to have
internal tristate buses. Implement tristate functions only at the I/O level.

http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

Altera Corporation 17
Preliminary

Design Development ASIC to FPGA Design Methodology and Guidelines

If your code contains internal tristate inference, the Quartus II software
implements it using multiplexers. However, if your design contains
multiple partitions, and you are using incremental compilation, the
Quartus II software may not be able to infer the correct multiplexing logic
due to the lack of visibility. Therefore, it is a good practice not to use
internal tristates. Altera FPGAs support tristate buses through the I/O
interface to communicate with various on-board devices.

f For more details about coding guidelines, refer to the Design
Recommendations for Altera Devices and the Quartus II Design Assistant
chapter and the Recommended HDL Coding Styles chapter of the Quartus II
Handbook, volume 1.

Specification of External and Internal Memory

Memory block sizes and configurations are major considerations for
SOPC designs. Performance requirements determine whether to have
device memory on- or off-chip. The versatile high-memory bandwidth
internal memory can implement a variety of memory functions such as
RAM, CAM, FIFO, true dual-port memory, synchronous memory, and
asynchronous memory. The amount of internal memory that can be
implemented in an Altera FPGA is device dependent.

f To learn more about the available memory configurations and features
available in a specific device, refer to the corresponding device
handbook.

For more details on using the internal memory as FIFOs, refer to the
Single- and Dual-Clock FIFO Megafunction User Guide.

Memory Implementation—Flexibility and Efficiency

If a memory configuration does not fit in a single memory block, the
Quartus II software implements the required configuration by combining
two or more memory blocks. For example, if the design requires a
512 × 18-bit memory block, but the only blocks available are 512 × 9-bit,
the Quartus II software can combine two 512 × 9-bit blocks.

f For more information about memory configurations and the Quartus II
software settings, see the Altera website and AN 207: TriMatrix Memory
Selection Using the Quartus II Software.

http://www.altera.com/literature/ug/ug_fifo.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/an/an207.pdf
http://www.altera.com/literature/an/an207.pdf

18 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Design Development

Instantiating Altera RAM in Place of an ASIC RAM

In traditional ASIC design flow, memory is instantiated using models
provided by the foundry.

The memory model provided by the foundry contains timing information
for synthesis and a behavioral model for simulation. If the design has to
be ported to an Altera FPGA, you must configure the memory using the
MegaWizard Plug-In Manager. The wizard generates all the files
required for synthesis and simulation of the memory blocks.

Timing information for the memory models, also known as clear box
models, can be generated by the Quartus II software. Using the clear box
models generated by the Quartus II software, third-party synthesis tools
can perform an accurate area and timing estimate.

f For a more detailed discussion of RTL coding for efficient mapping of
memory in Altera devices, refer to the Design Planning with the Quartus II
Software chapter in volume 1 of the Quartus II Handbook.

1 When designing with Altera FPGAs, you must select the device
during the design planning process, because the available
memory resource varies according to the family and device.

The Stratix series of devices support only synchronous memory
interfaces. However, it is possible to operate these synchronous
memories in a pseudo-asynchronous mode if the design already contains
asynchronous references to memory blocks.

f For more information about synchronous memories, see AN 210:
Converting Memory from Asynchronous to Synchronous for Stratix &
Stratix GX Designs.

External Memory Interfaces

For many of today’s high-memory bandwidth applications, the memory
must reside outside the ASIC or FPGA to provide the required buffer size.
The Altera IP Megastore has pre-verified memory controllers that make
it easy for you to design a system with external memory. Altera’s
complete memory interface design solutions address today’s high-speed
memory interface challenges such as memory controller, I/O design, and
board level signal integrity issues. Altera’s solutions include advanced
FPGA architectures, customizable MegaCore® functions, Quartus II
design software, reference designs, demonstration boards, and
simulation models. Altera supports interfaces to SDR SDRAM,

http://www.altera.com/literature/hb/qts/qts_qii51016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51016.pdf
http://www.altera.com/literature/an/an210.pdf

Altera Corporation 19
Preliminary

Design Development ASIC to FPGA Design Methodology and Guidelines

DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM and reduced latency
DRAM (RLDRAM) with clock frequencies of up to 400 MHz, achieving a
throughput up to 1600 Mbps.

f For more details about different external memory interfaces available
with different Altera FPGA families, refer to the documentation and
reference designs at:
www.altera.com/technology/memory/mem-index.jsp.

Synthesis

Synthesis is the process of converting a design representation from RTL
code to a gate-level netlist. The Quartus II software has an integrated
synthesis engine. Altera also supports the use of third-party synthesis
tools such as SynplifyPro and Precision RTL from Mentor Graphics.
Figure 4 shows a typical synthesis flow. Compared to ASIC tools, FPGA
synthesis tools are much easier to use in terms of complexity and
scripting. These tools support all of the popular ASIC synthesis
techniques, including the following techniques:

■ Top-down or bottom-up approach
■ Modular design flow
■ Scripting

f For more information about design methodologies with different
synthesis tools supported in the Altera design flow, refer to the
Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II
Handbook.

http://www.altera.com/literature/hb/qts/qts_qii51008.pdf

20 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Design Development

Figure 4. Typical Synthesis Design Flow

Third-Party EDA Tool Support for Synthesis

In addition to the Quartus II integrated synthesis engine, you can use the
following third-party tools to perform synthesis:

■ Synplify Pro and Synplify, from Synplicity
■ LeonardoSpectrum and Precision Synthesis, from Mentor Graphics
■ DC FPGA, from Synopsys

Gate-level
Simulation

Post Place-
and-Route
Simulation

Configure device

Yes

No

Timing
requirements

met?

Constraints

Forward-annotated
timing constraints

Technology-
specific netlist

Post place-and-route
simulation files

Post-synthesis
simulation files

Configuration files
(.sof / .pof)

Quartus II
software

Synthesis

Functional
Simulation

VHDL Verilog HDL

Place-
and-Route

Synplify Pro,
Precision Synthesis,

or Quartus IITech.lib

Altera Corporation 21
Preliminary

Design Development Tools ASIC to FPGA Design Methodology and Guidelines

f For more details about using third party synthesis tools, refer to the
corresponding chapter in the Synthesis section in volume 1 of the
Quartus II Handbook.

Design
Development
Tools

Altera provides you with the following development tools, all of which
are available within the Quartus II software:

■ SOPC Builder
■ DSP Builder
■ MegaWizard Plug-In Manager
■ C2H Compiler

You can use these tools to ease SOPC design development and potentially
reduce time-to-market. The following sections present an overview of
these tools, and their advantages.

SOPC Builder

SOPC Builder provides a standardized, graphical environment for
creating SOPC designs composed of components including CPUs,
memory interfaces, standard peripherals, and user-defined peripherals.

SOPC Builder enables the combination of components such as embedded
processors, standard peripherals, IP cores, on-chip memory, interfaces to
off-chip memory, and user-defined logic into a custom system module.
This tool generates a single system module that instantiates these
components, and automatically generates the necessary bus logic to
connect them. SOPC Builder also generates RTL design files, which you
can use for the functional simulation of your system.

http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf

22 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Design Development Tools

Figure 5 shows an example of a typical set of system components with
which SOPC Builder can be used to generate a system-level module in
minutes. SOPC Builder also generates the test bench.

Figure 5. Elements of a Typical SOPC Design

Figure 5 shows the SOPC Builder user interface after a set of peripherals
are connected to a Nios® processor.

f For more details about the SOPC Builder, refer to SOPC Builder in
volume 4 of the Quartus II Handbook.

You can get more details about various IP Megafunctions available from
Altera at www.altera.com/literature/lit-ip.jsp.

DSP Builder

Altera FPGAs have digital signal processing (DSP) blocks, such as
dedicated multiplier blocks, and support embedded processors. These
features make Altera FPGAs very suitable for use in such applications. In
addition, Altera design flow provides tools that make designing for DSP
much easier.

The Altera DSP portfolio consists of proven, high-performance, standard
algorithms and functions created to help engineers meet today’s rapidly
evolving technologies. Every function in Altera’s Megacore function
library has been rigorously tested and meets the exacting requirements of
various industry standards. Altera provides an extensive portfolio of
drop-in DSP functions. The DSP portfolio includes everything you need
to build system-on-a-programmable-chip (SOPC) solutions. You can
choose blocks of intellectual property (IP) from a comprehensive range of
standard DSP functions to create a complete SOPC solution. You can

Nios
Processor

Memory
Controller Memory

UARTDMA
Controller PCI

http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp

Altera Corporation 23
Preliminary

Design Development Tools ASIC to FPGA Design Methodology and Guidelines

instantiate each function multiple times in different designs. The IP
library includes functions such as filters, transforms, encoders, error
detection and correction circuits, and video and image processors.

Altera’s DSP Builder integrates the Quartus II software with high-level
algorithmic development tools such as MATLAB and Simulink software.
The DSP Builder software helps you create the hardware representation
of a DSP design in an algorithm-friendly development environment.
Figure 6 shows a simple design, built from concept-to-implementation,
using the DSP Builder. Several ready-to-use mathematical functions are
available within both the MATLAB and Simulink tools, along with
simulation models, which can be used to create a schematic. DSP Builder
can generate a RTL description of the design, along with the test bench.

Figure 6. DSP Builder Design Flow

The MegaWizard Plug-In Manager

The MegaWizard Plug-In Manager helps you create or modify design
files that contain custom megafunction variations, which can then be
instantiated in a design file.

Drag and drop

Generate VHDL,
Synthesize, and
place-and-route

24 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines IP Availability and Flow

C2H Compiler

With the evolution of HDLs, digital systems are being described at
increasingly higher levels of abstraction. Newer standards such as
SystemVerilog and SystemC are offshoots of this development. Many
ASIC designers now model their designs in a high-level language such
as C for verification of the architectural design and model
implementation. Several design tools are now available to help you to
take your concept from a high-level language to hardware
implementation, thereby reducing the design cycle.

To support the high-level design flow, Altera provides the C2H compiler
as part of the Nios II Embedded Design Suite. This tool creates custom
hardware for functionality that would otherwise require processor usage.
Creating a dedicated logic in hardware can improve the execution
performance. You can decide on the blocks required for the acceleration
requirement you may decide to generate. The C2H compiler takes code
written in ANSI-style C and maps it into resources in an Altera FPGA.

f For more details on using the Nios II C2H compiler, refer to the Nios II
C2H Compiler User Guide.

IP Availability
and Flow

IP blocks that are pre-verified reduce the design time, solve many time-
to-market issues, and simplify verification.

Altera has an extensive offering of specialty IP cores which you can
incorporate directly into your design. These include embedded
processors, specialty communications interfaces, and memory
controllers. These pre-verified cores help you reduce the time to market.
These IP cores are designed to take advantage of Altera’s device
architecture, thus ensuring optimal fit results. You can also find many
reference designs using these IP cores on Altera's website.

f For a list of IP cores available for Altera devices, go to
www.altera.com/literature/lit-ip.jsp.

The MegaWizard portal extension to the MegaWizard Plug-In Manager
allows you to directly install and use the MegaCore® functions available
at the IP MegaStore™ site without leaving the Quartus II environment.
You can select an available MegaCore function in the list, obtain
information about the selected MegaCore function, register with the
Altera IP MegaStore site, download the MegaCore function, install and
launch the corresponding MegaWizard plug-in (if provided), all from
within the Quartus II software. With this feature, you can access the most
up-to-date versions of the MegaCore functions at the IP MegaStore.

http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf

Altera Corporation 25
Preliminary

Test Synthesis ASIC to FPGA Design Methodology and Guidelines

f For more information about the IP design flow, refer to the
documentation at www.altera.com/literature/lit-ip.html.

Functional Simulation

Functional simulation verifies the functionality of the RTL design. The
following third-party EDA tools are supported:

■ NC-SIM and Verilog-XL, from Cadence
■ VCS and VSS, from Synopsys
■ ModelSim®, from Mentor Graphics®

Simulation can also be performed using the Quartus II software native
simulator.

Test Synthesis The manufacturer tests its FPGA devices for manufacturing defects,
eliminating the need for memory BIST, SCAN insertion, or other tests
typically used to detect manufacturing faults in an ASIC. This completely
eliminates the complex task of test synthesis.

Gate-Level
Simulation and
Timing Analysis

Gate-Level Simulation

Industry-standard EDA tools from Mentor Graphics, Synopsys, and
Cadence can be used to perform the gate-level simulation of your design.
A simulation library for all of the Altera FPGA device families is shipped
with the Quartus II software.

f For additional, detailed information about performing gate-level
simulation with different industry standard simulators, refer to the
Simulation section in volume 3 of the Quartus II Handbook.

Timing Analysis

The Altera design flow features a comprehensive timing analysis tool,
TimeQuest. TimeQuest is a full-featured ASIC-style timing analysis tool
and is part of the Quartus II software. TimeQuest supports the industry
standard Synopsys Design Constraint (SDC) format for running timing
analysis. ASIC designers using industry standard timing analyzers such
as PrimeTime will find timing analysis with TimeQuest very similar.

In addition to the TimeQuest Timing Analyzer, you can also run
third-party tools such as PrimeTime from Synopsys to perform static
timing analysis

http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf

26 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Place-and-Route

Place-and-Route Use the Quartus II Fitter to place-and-route your design targeted to an
Altera FPGA. The Quartus II software reads standard EDIF, VHDL, and
Verilog HDL netlist files, and generates VHDL and Verilog HDL netlist
files for a convenient interface to other industry-standard EDA tools.

The Quartus II software can perform various netlist optimizations during
the Fitter stage to meet performance and area requirements.

f For more details about optimization techniques available in Quartus II
for the place-and-route stage of design compilation, refer to the Area and
Timing Optimization chapter in volume 2 of the Quartus II Handbook.

The Chip Planner in the Quartus II software allows you to assign logic to
a specific location or range of locations within a device or logic cell
(including embedded and I/O cells). The Chip Planner also lets you view
logic placement made by the Fitter and/or by user assignments, make
and view LogicLock region assignments, and view critical path
information, physical timing estimates, and routing congestion.

Post
Place-and-Route
Verification

Verification of the post place-and-route netlist is performed to verify
timing requirements, logic equivalence, and to estimate power
consumption. The Quartus II software produces netlists that support
various third-party EDA tools to perform different verification
operations.

Gate Level Simulation

The Quartus II software can generate a netlist to run simulation using
industry standard simulators and has the option of generating either of
the following netlists:

■ The Verilog HDL or VHDL netlist to perform functional simulation
■ The Verilog HDL or VHDL netlist, along with timing information

(the SDF file) to perform timing simulation

Static Timing Analysis

Altera provides an ASIC strength SDC-based timing analysis tool called
TimeQuest as a part of the Quartus II software. In addition to TimeQuest,
you can also use PrimeTime from Synopsys, which is the
industry-standard STA sign-off tool used for ASICs. If you select the
PrimeTime EDA tool for timing analysis, the Quartus II software writes
out the Verilog HDL or VHDL gate-level netlist, the SDF file, and the tool
command language (Tcl) script to run static timing analysis in
PrimeTime. In addition, PrimeTime libraries are shipped with the
Quartus II software.

http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf

Altera Corporation 27
Preliminary

Post Place-and-Route Verification ASIC to FPGA Design Methodology and Guidelines

f For more details about using Synopsys PrimeTime for your FPGA
designs, refer to the Synopsys PrimeTime Support chapter in volume 3 of
the Quartus II Handbook.

For additional information about static timing analysis with TimeQuest,
refer to the Quartus II TimeQuest Timing Analyzer and Switching to the
Quartus II TimeQuest Timing Analyzer chapters in volume 3 of the
Quartus II Handbook.

Formal Verification

Formal verification is widely used to verify ASIC designs. By running
formal verification in conjunction with static timing analysis, you can
confirm that the post-route netlist is the same as the RTL design in
functionality. This reduces the need to run resource intensive and
time-consuming gate-level simulations.

Altera design flow supports industry-standard Cadence Conformal LEC
for formal verification. If you use Quartus II Integrated Synthesis to
synthesize your design, you can verify the equivalence between the RTL
and post-fit design using Conformal LEC. If you use Synplify Pro to
synthesize your design, you can verify the equivalence between the .vqm
netlist and the Quartus II post-fit netlist using Conformal LEC.

f For additional information about formal verification support, see the
Formal Verification section in volume 3 of the Quartus II Handbook.

Power Estimation

As the design and device sizes grow, power becomes a very important
consideration in system design. The Altera FPGA design flow supports
several methods to estimate power at different stages of the design. These
estimations help you determine the power consumption accurately and
develop the right power budget for your system. The first method uses a
design utility called the PowerPlay Early Power Estimator. Estimated
power consumption can be calculated based on typical conditions.

f For more information about the PowerPlay Early Power Estimator, go to
www.altera.com/support/devices/estimator/pow-powerplay.jsp.

The PowerPlay Power Analyzer, which is typically run in a later stage in
the design cycle, uses simulation data to accurately predict the power
dissipation. By choosing simulation data that is a true representation of
the design’s operation, you can predict the power consumption fairly
accurately.

http://www.altera.com/literature/hb/qts/qts_qii53005.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf

28 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Post Place-and-Route Verification

The Stratix III family of devices provides you with an architecturally
advanced, high-performance solution together with very low power
consumption. In these devices, you can choose to increase performance in
regions where you need it, and decrease power consumption everywhere
else. With architecturally advanced features and Programmable Power
Technology, Stratix III devices are a good alternative to traditional ASICs.

f For more details about running the PowerPlay Early Power Estimator
and PowerPlay Power Analysis, refer to the PowerPlay Power Analysis
chapter in volume 3 of the Quartus II Handbook. Additional information
on power estimation is also available in the Quartus II software Help.

Clock Tree Synthesis

Clock tree synthesis (CTS) is an important step in the traditional ASIC
design methodology, and is performed after placement. CTS builds a
clock network to reduce the clock skew between registers in the design.
CTS synthesis is performed either by third-party EDA tools that have the
capacity to perform physical synthesis, or by the foundry tools. CTS can
take a great deal of time, and also may require several iterations before
the required clock skew is achieved. Because Altera FPGAs include
pre-built, low-skew networks, there is no need to perform CTS.

Test Methodology

ASIC testing and fault coverage is an important aspect of the traditional
ASIC development process. In an ASIC design flow, all the following
must be considered and analyzed: scan insertion, built-in self-test (BIST),
signature analysis, IDDQ, and automatic test pattern generation (ATPG).
ASIC testing typically involves test vector generation, using ATPG tools
to test the device for manufacturing defects under the “single stuck-at”
model. ATPG is usually performed after completion of scan insertion.
Scan insertion is performed to improve the obtained fault coverage by
reducing the sequential testing problem to a combinational testing
problem. Using FPGA technology, you do not have to worry about device
testing, because FPGA devices are pretested at the factory. Therefore,
compared to ASIC devices, FPGA devices are much more likely to be free
of manufacturing defects.

System designers use boundary scan testing to ensure pin connectivity
and functionality on a board. In traditional ASIC design flow, you have
to spend considerable manual effort to insert and simulate boundary scan
logic. Boundary scan insertion normally requires the use of third-party
EDA tools. However, boundary scan logic (JTAG tap controller) is built
into all Altera FPGAs. You do not have to use any third-party tools or do
additional work to access the boundary scan logic available on the device.

http://www.altera.com/literature/hb/qts/qts_qii53013.pdf

Altera Corporation 29
Preliminary

Scripting ASIC to FPGA Design Methodology and Guidelines

Scripting Traditionally, many ASIC designers use scripts to run their compilation,
simulation, synthesis, and verification. Altera’s design software supports
the use of scripts. The TimeQuest Timing Analyzer uses scripts written in
Tcl and allows you to specify timing constraints in Synopsys Design
Constraint (SDC) format. FPGA synthesis tools such as Synplify and
Synplify Pro, and Precision Synthesis support scripts written in Tcl and
SDC format. You can generate a Tcl Script File (.tcl) from an existing
project created with the Quartus II software, or you can use Quartus II Tcl
templates to create Tcl scripts. You can run Tcl scripts or individual Tcl
commands from within the Quartus II software and other EDA software
tools.

f For more details about using Tcl Scripting with Altera’s design flow and
Quartus II software, refer to the Command-Line Scripting and Tcl Scripting
chapters in volume 2 of the Quartus II Handbook.

Quartus II
Software
On-Chip
Debugging
Features

When you are designing an ASIC, you may have limited options for
on-chip debugging. The number of test nodes on an ASIC depends on the
spare I/O on the chip. Also, once the chip is fabricated, you have no way
to bring out any more test points. However, when you are designing with
an Altera FPGA, you have a number of on-chip debugging options for
system-level debugging. Based on your need, you can use one of the
following tools:

■ SignalTap® II Embedded Logic Analyzer
■ SignalProbe™ Incremental Routing
■ Logic Analyzer Interface
■ In-System Memory Content Editor
■ In-System Sources and Probes Editor

SignalTap II Embedded Logic Analyzer

In ASIC devices, test points and pins are used to probe various nodes to
help identify the source of a problem. With these test points/pins and a
logic analyzer, you can effectively determine the source of most
problems. However, ASICs are less flexible to troubleshoot because once
a chip is fabricated, you cannot bring out additional internal signals to the
pin level. Any logic for test modes, and assignment of specific signals to
the I/Os, must be designed beforehand.

The SignalTap II Embedded Logic Analyzer captures the data of internal
nodes and transfers the data in real time, via a download cable, to the
Quartus II software. This data transfer takes place because the
SignalTap II Embedded Logic Analyzer supports trigger positions and
trigger events, including the device’s power-up sequence, in the same
way that a standard external logic analyzer does.

http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii52003.pdf

30 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Quartus II Software On-Chip Debugging Features

Because the SignalTap II Embedded Logic Analyzer uses the
programming interface to communicate with the computer, you do not
require extra test pins. Acquired data is saved to the device’s internal
RAM and then streamed off-device via the JTAG communication port.
This is advantageous when BGA packages are used and access to pins is
difficult, or impossible.

SignalProbe Incremental Routing

The SignalProbe feature gives you quick access to internal design signals
for system-level debugging. A logic analyzer can be used with these
SignalProbe pins in a way similar to the ASIC methodology.

The SignalProbe feature supports incremental routing, and allows you to
route signals to I/O pins for efficient signal verification without affecting
the rest of the design. When device memory is limited and there is no
access to a JTAG communication port, you can perform signal debugging
and hardware verification using the SignalProbe feature.

The Quartus II software lets you select the nodes to be routed to
pre-specified SignalProbe pins. You can then use a logic analyzer to
analyze your selected internal nodes.

Logic Analyzer Interface

Using this interface, you can connect and transmit FPGA internal signals
to an external logic analyzer. You can use this feature to connect a large
number of internal signals to a small number of output pins for
debugging.

In-System Memory Content Editor

This feature provides read and write access to FPGA memories through
the JTAG interface. This makes it easy to test changes to memory contents
when the device is functioning in a system.

In-System Sources and Probes Editor

You can use the In-System Sources and Probes editor to set up register
chains to drive or sample instrumented nodes in your design. You can
input virtual stimuli and capture the value of instrumented nodes. Thus,
you can create simple test vectors to exercise your design without
external test equipment.

f For more information about the system-level debug options for Altera
FPGAs, refer to the In-System Design Debugging section in volume 3 of
the Quartus II Handbook.

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf

Altera Corporation 31
Preliminary

Device Programming ASIC to FPGA Design Methodology and Guidelines

Device
Programming

After an ASIC returns from the foundry, you can not change the
functionality of the device. However, FPGA devices can be reconfigured
many times, providing more flexibility. The ability to change the
functionality of a device and add enhancements and fixes is a very useful
feature during the prototyping stages.

Altera FPGAs can be configured using a download cable or by using a
configuration device. A download cable is used more frequently during
prototyping stages. Using a download cable makes design changes very
simple and fast, but the board must be reconfigured using the Quartus II
software every time the power is applied to the board. There are various
download cables you can use to connect to the serial, USB, or parallel port
of your computer, and each download cable supports different
configuration methods.

In systems where it is not practical to configure a device using a
download cable, Altera FPGAs can be configured using flash-based or
EEPROM-based configuration devices that store the configuration data
and configure the FPGA. When the board is powered on, the
configuration device sends the configuration data from memory to the
FPGA device.

f For more information about configuration using the download cable,
refer to volume 1 of the Configuration Handbook and the appropriate
device handbook.

For a comprehensive list of configuration options available for different
device families, go to
www.altera.com/support/devices/configuration/cfg-index.html.

HardCopy
Devices

Altera offers the cost-effective HardCopy structured ASICs that extend
the flexibility of high-density FPGAs to a high-volume production
solution. Compared to high-end FPGAs, the HardCopy structured ASICs
have lower unit cost, lower power consumption, and are often higher in
performance. When you use these devices, you incur lower NRE costs
and get a faster development time than with standard-cell ASICs.

HardCopy devices allow you to use Altera’s Quartus II software along
with the EDA tools of your choice to design and prototype your design
on an FPGA. Altera’s HardCopy Design Center seamlessly migrates the
designs to a low-cost, functionally-equivalent, pin-compatible HardCopy
Structured ASIC with minimal risk. This approach helps you benefit from
the flexibility of FPGAs as well as the density, cost, performance, and
power benefits of ASIC technology.

http://www.altera.com/literature/lit-config.jsp

32 Altera Corporation
Preliminary

ASIC to FPGA Design Methodology and Guidelines Conclusion

Using the HardCopy series of devices, Altera’s SOPC solutions can be
leveraged from prototype to production, while reducing cost and
speeding time-to-market. Unlike ASIC device development, the
HardCopy design does not require the generation of testbenches, test
vectors, or timing and functional simulation. The HardCopy conversion
process requires only the Quartus II software-generated output files.
Altera HardCopy Design Center performs the conversion and delivers
functional prototypes in eight weeks.

f For more information about the HardCopy alternative, and for details
about migrating Altera FPGA designs to HardCopy Structured ASICs,
refer to volume 1 of the HardCopy Series Handbook, volume 1.

Conclusion There are several advantages to using Altera FPGAs in place of ASICs in
your systems. You can reduce the time to prototyping and to volume
production.You can start the firmware development early in the design
cycle because you can program the FPGA even while your design is not
yet complete and bug free. Modifications, to either the firmware or the
design, can be accomplished with a short turnaround time. Because
devices can be reconfigured, there is no NRE cost associated with design
iterations, and design modifications are easy to accommodate—taking
minutes as compared to months.

The Quartus II software performs place-and-route and generates all the
files necessary to build the FPGA. The Quartus II software provides an
easy interface with industry-standard simulation and timing verification
EDA tools. Altera also offers the migration from FPGAs to cost effective
HardCopy structured ASIC for high volume applications.

f For more information about Altera products, refer to the Altera website:
www.altera.com/literature/lit-index.html.

http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf

Altera Corporation 33
Preliminary

Referenced Documents ASIC to FPGA Design Methodology and Guidelines

Referenced
Documents

This section lists the documents referenced in this application note.

■ Altera Product Selector Guide
■ AN 207: TriMatrix Memory Selection Using the Quartus II Software
■ AN 210: Converting Memory from Asynchronous to Synchronous for

Stratix & Stratix GX Designs
■ Area and Timing Optimization chapter in volume 2 of the Quartus II

Handbook
■ Configuration Handbook
■ Command-Line Scripting chapter in volume 2 of the Quartus II

Handbook
■ Design Planning with the Quartus II Software chapter in volume 1 of the

Quartus II Handbook
■ Design Recommendations for Altera Devices and the Quartus II Design

Assistant chapter in volume 1 of the Quartus II Handbook
■ Formal Verification section in volume 3 of the Quartus II Handbook
■ Gated Clocks section in the Design Recommendations for Altera Devices

and the Quartus II Design Assistant chapter in volume 1 of the
Quartus II Handbook

■ Gate Level Register Retiming section in the Power Optimization chapter
in volume 2 of the Quartus II Handbook

■ HardCopy Series Handbook, volume 1
■ In-System Design Debugging section in volume 3 of the Quartus II

Handbook
■ I/O Management chapter in volume 2 of the Quartus II Handbook
■ Netlist Optimization and Physical Synthesis chapter in volume 2 of the

Quartus II Handbook
■ Nios II C2H Compiler User Guide
■ Power Optimization chapter in volume 2 of the Quartus II Handbook
■ PowerPlay Power Analysis chapter in volume 3 of the Quartus II

Handbook
■ Quartus II Incremental Compilation for Hierarchical and Team Based

Design chapter in volume 1 of the Quartus II Handbook
■ Quartus II Integrated Synthesis chapter in volume 1 of the Quartus II

Handbook
■ Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the

Quartus II Handbook
■ Recommended HDL Coding Styles chapter in volume 1 of the Quartus II

Handbook
■ Simulation section in volume 3 of the Quartus II Handbook
■ Stratix III Power Management Design Guide
■ Synopsys PrimeTime Support chapter in volume 3 of the Quartus II

Handbook
■ Synthesis section in volume 1 of the Quartus II Handbook
■ Switching to the Quartus II TimeQuest Timing Analyzer chapter in

volume 3 of the Quartus II Handbook

http://www.altera.com/literature/hb/qts/qts_qii5v3_05.pdf
http://www.altera.com/literature/hb/hrd/hc_h5v1.pdf
http://www.altera.com/literature/sg/product-catalog.pdf
http://www.altera.com/literature/hb/qts/qts_qii52013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52005.pdf
http://www.altera.com/literature/hb/qts/qts_qii53013.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51016.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii51015.pdf
http://www.altera.com/literature/hb/qts/qts_qii53019.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii51007.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf
http://www.altera.com/literature/hb/qts/qts_qii52016.pdf
http://www.altera.com/literature/hb/qts/qts_qii52007.pdf
http://www.altera.com/literature/an/an210.pdf
http://www.altera.com/literature/hb/qts/qts_qii51008.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v1_03.pdf
http://www.altera.com/literature/ug/ug_nios2_c2h_compiler.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_01.pdf
http://www.altera.com/literature/hb/qts/qts_qii53005.pdf
http://www.altera.com/literature/hb/qts/qts_qii5v3_06.pdf
http://www.altera.com/literature/hb/qts/qts_qii52002.pdf
http://www.altera.com/literature/hb/qts/qts_qii53018.pdf
http://www.altera.com/literature/lit-config.jsp
http://www.altera.com/literature/an/an448.pdf
http://www.altera.com/literature/an/an207.pdf

34 Altera Corporation
Preliminary

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Literature Services:
literature@altera.com

Copyright © 2007 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company,
the stylized Altera logo, specific device designations, and all other words and logos that are identified as
trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera
Corporation in the U.S. and other countries. All other product or service names are the property of their re-
spective holders. Altera products are protected under numerous U.S. and foreign patents and pending
applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products
to current specifications in accordance with Altera's standard warranty, but reserves the right to make chang-
es to any products and services at any time without notice. Altera assumes no responsibility or liability
arising out of the application or use of any information, product, or service described
herein except as expressly agreed to in writing by Altera Corporation. Altera customers
are advised to obtain the latest version of device specifications before relying on any pub-
lished information and before placing orders for products or services.

ASIC to FPGA Design Methodology and Guidelines Document Revision History

■ Synchronous FPGA Design Practices section in the Design
Recommendations for Altera Devices and the Quartus II Design Assistant
chapter in volume 1 of the Quartus II Handbook

■ Tcl Scripting chapter in volume 2 of the Quartus II Handbook

Document
Revision History

Table 1 shows the revision history for this application note.

Table 1. Document Revision History

Date and Document
Version Changes Made Summary of Changes

October 2007
v2.0

Updated sections:
● FPGA Financial Benefit on page 3
● Design Specifications on page 5
● Design Development on page 11
● Design Development Tools on page 21
● Gate-Level Simulation and Timing Analysis on

page 25
● Post Place-and-Route Verification on page 26
● Quartus II Software On-Chip Debug Features on

page 29
● Device Programming (Prototype) on page 31
● HardCopy Devices on page 31
● Added Referenced Documents on page 33

Updated for the Quartus II
software version 7.2.

July 2003
v1.0

Initial release.

http://www.altera.com/literature/hb/qts/qts_qii52003.pdf
http://www.altera.com/literature/hb/qts/qts_qii51006.pdf

	ASIC to FPGA Design Methodology and Guidelines
	Introduction
	FPGA Financial Benefit
	ASIC and FPGA Design Flows
	Design Specification
	I/O Specification
	Number of I/O Pins
	Location of I/O Pins
	I/O Timing

	Number of Low-Skew Signals
	Memory Requirements
	FPGA Device Sizing
	Phase-Locked Loop (PLL) Requirements
	Verification Methodology
	Clock Frequencies
	Number of Simultaneously Switching Outputs (SSOs)
	Power Requirements

	Design Development
	Methodology Selection
	RTL Coding
	Synchronous Design Practices Versus Asynchronous Designs
	Synchronous Versus Asynchronous Resets
	Gated Clocks Versus Clock Enables
	Divided Clocks
	Using Data Pipelining
	Using Encoding Schemes
	Using Look-Ahead Techniques
	Using Logic Duplication
	Using Internal Buses

	Specification of External and Internal Memory
	Memory Implementation-Flexibility and Efficiency
	Instantiating Altera RAM in Place of an ASIC RAM

	External Memory Interfaces
	Synthesis
	Third-Party EDA Tool Support for Synthesis

	Design Development Tools
	SOPC Builder
	DSP Builder
	The MegaWizard Plug-In Manager
	C2H Compiler

	IP Availability and Flow
	Functional Simulation

	Test Synthesis
	Gate-Level Simulation and Timing Analysis
	Gate-Level Simulation
	Timing Analysis

	Place-and-Route
	Post Place-and-Route Verification
	Gate Level Simulation
	Static Timing Analysis
	Formal Verification
	Power Estimation
	Clock Tree Synthesis
	Test Methodology

	Scripting
	Quartus II Software On-Chip Debugging Features
	SignalTap II Embedded Logic Analyzer
	SignalProbe Incremental Routing
	Logic Analyzer Interface

	Device Programming
	HardCopy Devices
	Conclusion
	Referenced Documents
	Document Revision History

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

