气泡随液体流动,在阀门扼流区下游流速逐渐降低,静压升高,气泡相继被挤破,引起流体中无规则的压力波动,这种特殊的湍化现象称为空化,由此产生的噪声叫空化噪声。在流量大、压力高的管路中,几乎所有的节流阀门均能产生空化噪声,这种空化噪声顺流而下可沿管道传播很远,这种无规则噪声能激发阀门或管道中可动部件的固有振动,并通过这些部件作用于其它相邻部件传至管道表面,产生类似金属相撞产生的有调声音。空化噪声的声功率与流速的七次方或八次方成正比,因此为降低阀门噪音可采用多级串接阀门,目的是逐级降低流速。如我们经常使用的截止阀,采用的是低进高出的流向,因此当流体流经阀腔时,就会在控制阀瓣的下面(即扼流区内)形成低压高速区,产生气泡。通过阀瓣后又形成高压低速区,气泡相继被挤破产生空化噪音。 根据以上分析可见管道噪声、阀门噪声都与液体流动的状态有关,换句话说即与压差和流速有关。
二、流速、压差所产生的噪声调查 下面是我们实地调查的数据。天津碱厂朝阳楼小区换热站,供热面积26.5万平方米,管线敷设方式:室外架空,该换热站分四个环路供出。南区管径DN250所供面积13.2万平方米;北区管径DN250所供面积10.8万平方米;春风里管径DN200,所供面积12000平方米;34#楼管径DN150,所供面积8012平方米。住户反映34#楼和春风里安装控制阀后噪音较大。2003年3月3日我们到现场进行测试(设备超声波流量计、噪声计),数据如下: 实测室内噪声34#楼、2、3单元57 dB;春风里1#楼1、3单元58 dB~60 dB,而南区1#楼1、3、5单元为45~47 dB。从以上数据看,虽然各入户单元流速都没超过设计要求,但由于相对单体流速太快、压差较大,造成在控制阀处产生空化噪声。34#楼的压差为0.06Mpa,而南区1#楼的压差为0.02 Mpa,形成局部流速快和压差大的另一个原因是34#楼和春风里距换热站的距离较近。