多CCD图像传感器同步电路 |
1、多CCD图像同步获取系统 CCD(ChargeCoupledDevice)图象传感器具有较高的空间分辨率,较高的光电灵敏度和较大的动态范围,在辐射成象,特别是医学成象领域已形成研究与开发的热点。在一些特定的应用场合,如采用多个CCD来传感同一幅闪光图象,需要将各个CCD同步起来,以保证各个CCD产生的视频信号的一致性,从而提供了多个CCD的图象信号进行拼接的可能性。本文主要介绍多CCD图像传感器同步电路的两种实现方案。 电路的设计思想是以一个CCD的视频输出信号为基准源,作为其余CCD传感器的外同步信号,使各个CCD同步工作,捕捉同一时刻的图像,如图1所示。将1#CCD图像传感器的视频输出信号连接到多CCD图像传感器同步电路的输入端,经过视频分配放大器处理后(以4个CCD图像传感器为例),输出4路与输入信号完全一致的视频信号。其中3路作为2#、3#、4#CCD图像传感器的外同步信号,剩余1路直接作为1#CCD图像传感器的视频输出信号。 2、对视频分配放大器的要求 多CCD图像传感器同步电路的核心是视频分配放大器。视频分配放大器的总增益为1∶1,完成1路输入多路输出的功能。它将1#CCD输出的视频信号经过放大处理后,输出多路与原输入信号完全一致的视频信号,作为其余各个CCD的外同步输入信号。 ![]() 图1多CCD图像同步获取系统 ![]() 图2直接耦合放大器 根据上述几点,笔者从分立元件电路和集成电路两个角度设计了同步电路的两种实现方案。 3、直接耦合放大器的原理电路 分立元件电路是采用晶体管实现放大功能。用晶体管构成视频放大电路,主要问题有输入电阻低,输入电容大,电流放大系数随频率而变。针对这几点,放大器的设计是采用NPN管与PNP管组成并联调节的单端推挽放大电路,它可以得到约2.5倍的输出,失真又小,非常适用于75Ω线路放大电路。与通常视频分配放大器不同的是,本设计是先对输入信号进行能量等分分配,再分别由4个放大电路进行放大,这样可以保证各路输出信号相互独立,互不影响,而且放大器的输出功率也容易满足负载电路的要求。原理电路见图2。虚框内为其中一路放大电路,虚框外的元件为多路放大电路所共用。 放大器的工作过程是:输入的视频信号经电容C1隔直流后,加在Q11的输入端b、e之间,经Q11放大后,将集电极电阻R12上的电压加到Q12的输入端e、b之间,经Q12放大后,以集电极电阻R16上的电压作输出。这两个晶体管都工作在共发射极放大状态,而且两级的工作点互相配合,使输出电压具有较大的变化范围。此放大电路的特点是信号失真小,放大倍数比较高,温度稳定性好,输入阻抗高,输出阻抗低。 R1为阻抗匹配电阻,视频信号经过电缆传输,要求视频分配放大器是一个匹配终端。C1、C13为隔断直流电容,隔断放大器的输入端与信号源之间、输出端与负载之间的直流通道,保证放大器的静态工作点不因输入、输出的连接而发生变化。 Q11选用NPN管,Q12选用PNP管,构成互补式直接耦合电路。因为在直接耦合放大电路中,第二级的基极电压也就是第一级的集电极电压,如果采用同类型(例如NPN型)晶体管,则各级管子的集电极电位逐步升高,会限制放大级。而在前后级配合使用NPN和PNP管,可以把后级的集电极电位降下来。 为了保证放大器工作更加可靠,在Q11的基极和Q12的集电极分别串接了阻尼电阻R11和R17,以防寄生振荡。由于集电极电流较大,因而阻尼电阻R17不宜过大(一般是十几欧姆到几十欧姆),否则会使能量消耗过大。基极阻尼电阻R11也不能太大(一般是几十欧姆到几百欧姆),否则也会过多地影响频率响应。同时R17还具有匹配负载电阻的作用。 C11与R15组成消除自激的校正网络,将放大电路的主极点频率压低,从而破坏了自激振荡的条件。C11的容值不能过大,否则电路的高频响应将变差。 在设计视频放大器的PCB电路时,必须注意元件的排列。只有合理的安排,才能使电路中的寄生参数(寄生电容、引线电感)及各个参数(包括实在的集中参数及寄生参数)之间的相互影响减弱到最小的程度,从而在调试视频放大器时就可减少很多麻烦(如频率不足、寄生振荡等)。 为了使寄生参数减弱到最小限度,凡是处在视频电压下的元件都应尽量就近相接,并且力求尺寸愈小愈好。元件所处的位置应与金属地电位尽可能地远;元件与元件的联结应沿最短的途径;引线与引线应相互远离并不宜平行。尤其是集电极电路必须与基极电路远离,以防两者之间的寄生耦合。 放大器的地线最好采用比较粗的裸铜线(直径为1mm左右),并且由末级依次连接,在一点接地,避免用放大器的底盘作地线。 ![]() 图3MAX4137的内部结构 图4典型应用电路 4、MAX4137视频放大器 基本工作原理是:输入信号通过电压串联负反馈放大器放大后,平均分配到4个电压跟随器,各电压跟随器根据其对应的SEL信号电平状态来确定各输出端的输出状态。 MAX4137可用于视频信号的转换和分配、高分辨RGBCRT监视、高速模拟总线驱动、RF信号处理、复合视频前置放大器等领域。 MAX4137的外围元件少,C1~C5均起电源消振作用,R1~R5为匹配电阻。典型应用见图4。此电路调试简便,可靠性高。 表1MAX4137引脚的功能 欲获得185MHz的频带,在设计PCB板时应遵照下列几项原则。 5、结束语 这两种电路,笔者在实际应用中均采用过,效果十分理想。分立元件电路级联比较方便,只需将虚框内部分并联即可,可以根据CCD的数量灵活设计所需的路数。只要PCB电路设计合理,就可一举成功。集成芯片电路体积小,整个电路的占用空间为2.5cm×3cm(双面板),有效地提高了空间利用率。这两种视频分配放大器还可以应用于闭路电视监视系统,将一台摄象机的视频信号提供给多台监视器或其它设备。 |
-
-
-
-
shengjinli | 当前状态:离线
总积分:259 2025年可用积分:0
注册时间: 2007-12-07
最后登录时间: 2009-01-05
-
-
shengjinli 发表于 2007/12/22 14:46:13
引用 shengjinli 2007/12/22 14:46:13 发表于2楼的内容
-