任何高速信号都能够(并且一定会)在相邻电路(或者平面)产生一个耦合信号。这种机制与串扰的机制完全相同。这是由电磁耦合,互感耦合与互容耦合的综合效果,引起的。因此,如同单端信号的返回电流倾向于在直接位于走线下方的平面上传播,差分线也会在其下方的平面上产生一个感应电流。
但这不是返回电流。所有的返回电流已经抵消了。因此,这纯粹是平面上的耦合噪声。问题是,如果电流必须在一个环路中流动,剩下来的电流到哪里去了呢?记住,我们有两根走线,其信号大小相等极性相反。其中一根走线在平面一个方向上耦合了一个信号,另一根在平面另一个方向上耦合了一个信号。平面上这两个耦合电流大小相等(假设其它方面设计得很好)。
设计规则2
现在EMI 与环路面积已是广为人知了3。因此如果我们想控制EMI,就需要将环路面积最小化。并且做到这一点的方法引出了我们的第二条设计规则:将差分线彼此靠近布线。有人反对这条规则,事实上这条规则在上升时间较慢并且EMI 不是问题时并不是必须的。但是在高速环境中,差分线彼此靠得越近布线,走线下方所感应的电流的环路就越小,EMI 也可以得到更好的控制。
值得一提的是一些工程师要求设计人员去掉差分线下方的平面。原因之一是减小或消除走线下方的感应电流环路。另外一个原因是防止平面上已有的噪声耦合到(推测如此)走线上的低压信号4。
还有一个将差分线彼此靠近布线的理由。差分接收器设计为对输入信号的差敏感而对输入的共模偏移不敏感。也就是说即使(+)输入相对(-)输入仅有轻微的偏移,接收器也会检测到。但是如果(+)和(-)输入一起偏移(在同样的方向),相对而言接收器对这种偏移不敏感。因此如果任何外部噪声(比如EMI 或串扰)等同地耦合到差分线中,接收器将对此种(共模耦合)噪声不敏感。差分线布得越彼此靠近,任何偶合噪声在每根走线上就越相近。因此电路的噪声抑制就越好。