您的位置:控制工程论坛网论坛 » 传感器 » 多传感器信息融合技术----概念及原

nicebaby

nicebaby   |   当前状态:在线

总积分:415  2024年可用积分:0

注册时间: 2008-09-09

最后登录时间: 2011-08-09

空间 发短消息加为好友

多传感器信息融合技术----概念及原

nicebaby  发表于 2008/10/30 19:45:10      570 查看 0 回复  [上一主题]  [下一主题]

手机阅读

 多传感器数据融合是一个新兴的研究领域,是针对一个系统使用多种传感器这一特定问题而展开的一种关于数据处理的研究。多传感器数据融合技术是近几年来发展起来的一门实践性较强的应用技术,是多学科交叉的新技术,涉及到信号处理、概率统计、信息论、模式识别、人工智能、模糊数学等理论。 

     近年来,多传感器融合技术已成为军事、工业和高技术开发等多方面关心的问题。这一技术广泛应用于C3I(command,control,communication and intelligence)系统、复杂工业过程控制、机器人、自动目标识别、交通管制、惯性导航、海洋监视和管理、农业、遥感、医疗诊断、图像处理、模式识别等领域。实践证明:与单传感器系统相比,运用多传感器数据融合技术在解决探测、跟踪和目标识别等问题方面,能够增强系统生存能力,提高整个系统的可靠性和鲁棒性,增强数据的可信度,并提高精度,扩展整个系统的时空覆盖率,增加系统的实时性和信息利用率等。

一、基本概念及融合原理

1.多传感器数据融合概念

        数据融合又称作信息融合或多传感器数据融合,对数据融合还很难给出一个统一、全面的定义。随着数据融合和计算机应用技术的发展,根据国内外研究成果,多传感器数据融合比较确切的定义可概括为:充分利用不同时间与空间的多传感器数据资源,采用计算机技术对按时间序列获得的多传感器观测数据,在一定准则下进行分析、综合、支配和使用,获得对被测对象的一致性解释与描述,进而实现相应的决策和估计,使系统获得比它的各组成部分更充分的信息。

2.多传感器数据融合原理

        多传感器数据融合技术的基本原理就像人脑综合处理信息一样,充分利用多个传感器资源,通过对多传感器及其观测信息的合理支配和使用,把多传感器在空间或时间上冗余或互补信息依据某种准则来进行组合,以获得被测对象的一致性解释或描述。具体地说,多传感器数据融合原理如下:

(1)N个不同类型传感器(有源或无源的)收集观测目标的数据;

(2)对传感器的输出数据(离散的或连续的时间函数数据、输出矢量、成像数据或一个直接的属性说明)进行特征提取的变换,提取代表观测数据的特征矢量Yi;

(3)对特征矢量Yi进行模式识别处理(如,聚类算法、自适应神经网络或其他能将特征矢量Yi变换成目标属性判决的统计模式识别法等)完成各传感器关于目标的说明;

(4)将各传感器关于目标的说明数据按同一目标进行分组,即关联;

(5)利用融合算法将每一目标各传感器数据进行合成,得到该目标的一致性解释与描述。

1楼 0 0 回复