2009-08-02
用于倒井的电动阀除了上述的三通阀外,也可以是多通阀。
计量流程控制:某一个或多个油井切换到计量位后,根据上、下液位开关状态自动控制压油阀的开、关,完成一定时间或一定罐次的计量(由RTU人机界面或中控室设置)。
计量计算:计量过程结束后,根据计量有效时间、实际计量罐次、平均含水率、天然气流量自动计算出液、油、气的日产量。
2.2“质量流量计”计量工艺流程及其计量站控制终端
该工艺中,使用质量流量计取代了油气分离器完成产量计量。通过三通阀可以选择对哪一口井进行计量。油井来油通过质量流量计后可对原油流量进行检测,同时用含水仪检测原油含水率,进而可计算出纯油流量。另外,使用气体流量计对气量进行检测。计量站现场控制终端能够对原油流量、含水率、天然气流量实时检测和计算,从而实现该油井产量的三相计量。
对于这种工艺流程,计量站远程控制终端(RTU)应能够完成以下功能:
倒井控制:根据RTU人机界面操作命令或中控室远程操作命令,自动将某一个或多个油井切换到计量位,并启动计量。
计量流程控制:某一个或多个油井切换到计量位后,实时采集原油流量、含水率、天然气流量,完成一定时间的计量(由RTU人机界面或中控室设置)。
计量计算:计量过程结束后,根据计量有效时间、原油和天然气流量累计、含水率情况,自动计算出液、油、气的日产量。
2.3计量站远程控制终端的其它功能
数据采集功能:包括计量工艺流程温度、压力、液位、天然气浓度、含水率、注水流量等等。
报警与联锁:采集量报警如液位高报警、天然气浓度高报警等;设备故障报警如电动阀故障判断与报警、加热炉火焰监测与报警等;计量流程异常报警如压油时间超长报警等。
通信接口:一般通过无线电台与中控室的通信,实现计量站采集数据上传、计量结果上传和中控室参数设置的下传等远程操作,从而计量站无人值守。软件方面通常采用标准、开放的通信协议。RTU软件和中控室SCADA软件通过地址相匹配的实时数据库作为通信接口。
计量站远程控制终端直接决定着现场自动化控制的水平,因而应具备完善的功能、准确的计量算法、友好的人机界面、强大的通信能力。另外,虽然各个计量站的工艺流程相同,但是油井数、注水井数、采集点数往往有很大的差别,因此一个完善的计量站RTU应具有良好的软、硬件扩展能力和现场适应性,计量软件应提供多种参数设置以适应不同的工艺要求。
在硬件方面,应选择工业级的控制器和I/O模块,以及配套的工业级显示屏、电台、电源,以适应油田特殊的温度、湿度、油污、通信干扰等环境。在自然条件恶劣的西部沙漠油田甚至应选择军品级的硬件产品。
典型的计量站控制终端产品如:美国BAKER CAC公司的6532 RTU。北京安控科技发展有限公司开发的ECHO 5400系列三相自动计量控制器,在消化吸收国外技术的基础上,结合国内油田的具体情况,特别是针对东部油田低产能油井的特点,进行了很大的改进提高。主要技术特点如下:
东部油田低产能油井多,其特点是液量低、含水率高、气量小、间歇出油情况严重,对于这种情况,国外产品的“单井计量”和“定时计量”模式往往无法保证正常计量流程的进行。ECHO
5400系列三相自动计量控制器针对这种情况专门开发了“多井计量”、“定次计量”模式。
原油含水率检测的精度是保证三相计量准确性的难点。含水仪的传统标定方式是每个计量站标定一条含水率曲线,但是同一个计量站的各个油井因其地质层位不同,含水仪传感器探头信号与含水率的对应关系往往不尽相同。ECHO
5400系列三相自动计量控制器在对不同油井进行计量时,向含水仪发出井号指示信号,而配套的含水仪则针对每一口油井标定一条含水率曲线,根据RTU的井号指示调用相应的含水率曲线,提高了检测精度。
对于“油气分离器加压力平衡罐”计量工艺,压油过程中不断进行含水率快速检测,并取其平均值来计算油、水产量。传统的含水检测方式是定时采集,但是由于受分离器气产量波动的影响,压油速度是变化的,从而常常导致含水率检测偏低。ECHO
5400系列三相自动计量控制器在含水率采集过程中,将液位变化的因素考虑进来,折算出的平均含水率精度提高。
对于无人值守的计量站,必须保证生产的安全和可靠性。计量站停电时,其站内各个油井往往还在工作,从而导致计量站冒油事故。ECHO 5400系列三相自动计量控制器将UPS作为可选配置,当发生断电时由UPS给RTU供电,RTU检测到断电后及时将电动阀切换到安全位置。对于电动阀运行中的故障,计量控制器也能及时判断和报警,便于中控室处理。
评论1
楼主 2009/8/2 13:08:52
3.计量站SCADA系统
对于无人值守的计量站,计量监控的任务全部转移到了中控室SCADA系统完成。中控室SCADA系统既要面向现场RTU,管理实时计量生产,另一方面还要将生产数据和计量结果传送到MIS系统,以便进行数据分析处理。
3.1 典型的SCADA、MIS系统结构
[img]20051228243356607.gif[/img]
3.2 SCADA系统软、硬件规划设计
对于现场无人值守的计量站系统,SCADA系统的稳定性直接影响实时生产管理,因而应采用足够的软、硬件冗余,提高系统可靠性。
中控室SCADA系统设备包括SCADA服务器、交换机(或集线器)、打印机等,构成局域网。对于规模较大的SCADA系统,为提高可靠性,一般应采用两台互为热备份的SCADA服务器作为SCADA系统的核心,通过双机热备的主站电台与多个计量站通信。系统通过UPS后备电源供电。
软件方面,通常选择标准的工控组态软件作为开发平台,如FIX SCADA 软件、Intouch软件、组态王软件等 ,在此基础上设计应用程序,以提高标准化程度,便于软件开发和维护。
组态软件通过通信驱动程序与计量站RTU通信,同时通信驱动程序又将SCADA主服务器和备份服务器连接起来,当其中一台服务器故障时实现双机的平滑切换。
计量站SCADA应用程序完成计量站数据采集、计量设置、计量流程监控、计量结果上传、报警管理等功能,一般包括如下主要模块和功能:
自动排序选井模块:完成油井井号的选择及决定单井的计量时间、计量方式等。
计量过程监视模块:实时监控计量站中各单井阀位状态、计量状态、计时等。
计量结果显示模块:查询和显示计量结果。
计量结果上传和存储模块:将动态采集数据(如温度、压力、流量等)、计量结果数据(产液量、产油量、产气量、含水率等)存入MIS系统历史数据库,进行后续分析处理。
所有计量数据、检测数据上传到中控室。操作管理人员在中控室发出指令,通过通信系统下达到计量站RTU,控制计量站的运行。在中控室停电或发生通信故障时,计量站的RTU能按照先前中控室设置或人机界面设置,独立地完成计量站的自动计量、数据检测和数据存储,待故障排除后,再向中控室传出计量和检测数据。
计量站SCADA系统典型的技术指标包括:
通信轮询周期:指各个计量站RTU数据在中控室刷新的最大时间间隔,是决定SCADA系统的实时性的重要指标。
稳定性和可靠性:一个稳定的SCADA系统应该能够长期、连续运行。中控室电台或SCADA服务器统出现故障后,应能够顺利切换到备份系统运行,以避免影响生产。
系统的扩展性和适应性:应能够实现动态增减油井、计量站,能够适应油田常见的作业变更(如“串联油井切换”,“抽油井转注水井”等)。
4.计量站MIS系统
计量站MIS系统以大型数据库为核心,汇总油井、水井、计量站等油田基础数据,存储现场RTU和SCADA系统上传的生产数据,对现场生产数据进行二次分析处理,并以曲线、报表等格式进行输出,满足油田生产管理的需要。
由于各个油田具体的生产管理制度不同,对MIS系统的功能要求往往有一定的差异。典型的计量站MIS系统应能够完成以下基本功能:
系统数据维护。如SCADA系统、MIS系统内部维护所使用的信息,以及中控室操作班组等操作安全信息等。
油井、水井、计量站基础数据维护。油井信息包括油井的井号、开/关状态、生产方式、管汇等,水井信息包括水井的井号、层系和区块信息等。
油田生产常常出现增减井、增减计量站、开/关井、“抽油井转注水井”、串联井等情况,基础数据库维护则保证MIS系统内部信息与实际生产情况保持一致。
动态采集信息。动态采集数据包括各个计量站现场的温度、压力、流量、天然气浓度等历史数据,以及各个油井的产量计量结果等。
计量数据处理和分析。生成油井、注水井、计量站、不正常井及其它统计日志信息。对于同一天多次计量的油井要进行“产量日汇总”,得出一个平均日产量;对于当日未计量的油井要进行“借产”,保证其产量数据的连续性;对于串联井以及多井合量的油井要进行“分产”,从“多井合量产量”得出“单井产量”......
报表输出。包括油井生产报表、计量站生产报表、注水井生产报表、断块/层系注水报表、异常情况报警报表等。
分析各个油井的产量和低产井间歇出油情况,确定合理的油井量油制度。对于东部低产能油井,由于其产量低、间歇出油情况比较严重,若简单地对各个油井均采用同样的计量时间,其计量结果往往不具备代表性,因此MIS系统的“确定油井量油制度”功能尤为必要。
5.计量站生产自动化的发展趋势
计量站生产自动化在自然条件恶劣的西部油田应用较早,在东部油田也正在逐步应用推广,并呈现出以下发展趋势:
改进计量工艺,选用先进可靠的仪表、含水仪、电动阀等现场设备,完善现场RTU功能。
远程计量监控与工业电视图像无线传输相结合,强化中控室对现场情况的实时监控,并解决防盗问题。
SCADA系统与WEB数据发布相结合、MIS系统与GIS系统(地理信息系统)相结合,实现生产信息在油田系统内部的共享,提高信息应用和生产管理水平。