2009-09-16
评论2
楼主 2009/9/16 11:56:44
3 变频器系统的控制方案
我厂的常一线泵B109和常二中泵B114的电动机功率分别为75kW和55kW,转速2982转/分,额定电压380V,额定电流分别为132A和103A,额定出口流量分别为28.520M3/h和20M3/h。如图2所示。
由图可以看出,在正常工作负荷情况下,电机工作在额定转速2982rpm,转速不可调。为保持流量稳定,采用控制出口阀门的方法进行控制,即差压变送器检测流量信号送至PID调节器, 再由PID调节器输出4-20mA控制信号,控制出口调节阀的开度,从而控制出口流量,保持流量稳定。原系统实际运行中,存在以下问题:
(1) 节流量较大,泵出口阀的节流量已接近泵额定流量的一半,浪费大量的电能。
(2) 控制精度低,出口流量波动较大(约3%)。
(3) 电机工作在额定转速,出力不变消耗电能。
(4) 电机噪音较大,泵和管线阀门压力较大,易造成泄漏。
根据系统的上述工艺要求,我们对变频器系统进行设计时,遵循了以下原则:
a、 保持出口流量稳定;b、 出口流量的控制精度0.5% ;c、电动机的转速范围应在 0~2982转/分;d、根据泵的工作特性,系统设计应按恒转距原则进行;e、节能降耗;f、系统设计采用工频和变频双切换,保证的生产的连续性和可靠性,可以互为备用; g、采用两路DCS输出接点,一路控制原调节阀,一路控制变频器,在变频器故障状态时,DCS能自动识别变频故障信号,然后切换到调节阀调节流量。而当变频器处于正常运行状态时,调节阀处于全开位置;
遵照上述原则,经过调研、比较,我们选择了日本东芝A5P变频器。该变频器具有技术先进、功能齐全、结构紧凑、可靠性高等特点,专为泵和风机类负载设计。其结构图如图3所示。
FRH:频率设定;ACC/DEC:加/减速控制电路;A/D:模数变换;V/F:压频变换;BD:基极驱动电路;CPU:微处理器;LED:显示电路 。
变频器的主电路为典型的“交—直—交”SPWM电压型主电路。
变频器的控制电路:频率给定FRH(即速度给定)经过ACC和DED加减速控制电路,变成频率和电压基准信号,分别经过A/D转换电路和V/F函数发生器电路,再进入CPU内,形成SPWM脉冲,成为IGBT的控制信号,驱动IGBT,从而使电压恒定、频率恒定的交流电,经过变频器后,变成了电压和频率可调的交流电。A5P变频器结构图如图3所示。整个控制系统采用微机进行采样、计算、实时控制、事故报警和显示。
4 变频器系统的运行情况
1997年7月,我厂在常一线泵和常二中泵电机上安装东芝A5P变频器后,运行情况与工频比较,如下所示:
(1) 电机运行参数和节能情况的比较
节电功率=((39.16×0.82×380)-(16.3×0.9×168))×1.73=16846(W)
节电率=((39.16×0.82×380)-(16.3×0.9×158))/(39.16×0.82×380)=79%
节电功率=((44.6×0.8×380)-(20×0.9×121))×1.73=19688 (W)
节电率=((44.6×0.8×380)-(20×0.9×121))/(44.6×0.8×380)=83%
从比较表可以看出,使用变频器后既可满足生产需要,又可大量节能。
楼主 2009/9/16 11:57:06