您的位置:控制工程论坛网论坛 » 自动化软件 » 嵌入式设备上的 Linux 系统开发 (3)

szzunzheng

szzunzheng   |   当前状态:离线

总积分:180  2024年可用积分:0

注册时间: 2007-06-06

最后登录时间: 2009-10-12

空间 发短消息加为好友

嵌入式设备上的 Linux 系统开发 (3)

szzunzheng  发表于 2007/11/13 12:35:36      940 查看 2 回复  [上一主题]  [下一主题]

手机阅读

有两个流行的用户模块可启用对闪存的访问:MTD_CHAR 和 MTD_BLOCK。 
MTD_CHAR 提供对闪存的原始字符访问,而 MTD_BLOCK 将闪存设计为可以在上面创建文件系统的常规块设备(象 IDE 磁盘)。与 MTD_CHAR 关联的设备是 /dev/mtd0、mtd1、mtd2(等等),而与 MTD_BLOCK 关联的设备是 /dev/mtdblock0、mtdblock1(等等)。由于 MTD_BLOCK 设备提供象块设备那样的模拟,通常更可取的是在这个模拟基础上创建象 FTL 和 JFFS2 那样的文件系统。
为了进行这个操作,可能需要创建分区表将闪存设备分拆到引导装载程序节、内核节和文件系统节中。样本分区表可能包含以下信息:
清单 5. MTD 的简单闪存设备分区 struct mtd_partition sample_partition = { 
      { 
                                           /* First partition */ 
            name : bootloader,             /* Bootloader section */ 
            size    : 0x00010000,          /* Size  */ 
            offset  : 0,          /* Offset from start of flash- location 0x0*/  
            mask_flags : MTD_WRITEABLE     /* This partition is not writable */ 
      },  
      {                                    /* Second partition */ 
            name : Kernel,                 /* Kernel section */ 
            size    :  0x00100000,         /* Size */ 
            offset : MTDPART_OFS_APPEND,   /* Append after bootloader section */ 
            mask_flags : MTD_WRITEABLE     /* This partition is not writable */ 
      },  
      {                                    /* Third partition */ 
            name : JFFS2,                  /* JFFS2 filesystem */ 
            size    :  MTDPART_SIZ_FULL,   /* Occupy rest of flash */ 
            offset :  MTDPART_OFS_APPEND   /* Append after kernel section */ 
      }
 }
上面的分区表使用了 MTD_BLOCK 接口对闪存设备进行分区。这些分区的设备节点是:
简单闪存分区的设备节点  User      device node         Major number    Minor number
  Bootloader    /dev/mtdblock0          31              0 
  Kernel        /dev/mtdblock1          31              1 
  Filesystem    /dev/mtdblock2          31              2 
在本例中,引导装载程序必须将有关 root 设备节点(/dev/mtdblock2)和可以在闪存中找到文件系统的地址(本例中是 FLASH_BASE_ADDRESS + 0x04000000)的正确参数传递到内核。一旦完成分区,闪存设备就准备装入或挂装文件系统。
Linux 中 MTD 子系统的主要目标是在系统的硬件驱动程序和上层,或用户模块之间提供通用接口。硬件驱动程序不需要知道象 JFFS2 和 FTL 那样的用户模块使用的方法。所有它们真正需要提供的就是一组对底层闪存系统进行 read、 write 和 erase 操作的简单例程。
嵌入式设备的文件系统
系统需要一种以结构化格式存储和检索信息的方法;这就需要文件系统的参与。Ramdisk(请参阅参考资料)是通过将计算机的 RAM 用作设备来创建和挂装文件系统的一种机制,它通常用于无盘系统(当然包括微型嵌入式设备,它只包含作为永久存储媒质的闪存芯片)。
用户可以根据可靠性、健壮性和/或增强的功能的需求来选择文件系统的类型。下一节将讨论几个可用选项及其优缺点。
第二版扩展文件系统(Ext2fs)
Ext2fs 是 Linux 事实上的标准文件系统,它已经取代了它的前任 — 扩展文件系统(或 Extfs)。Extfs 支持的文件大小最大为 2 GB,支持的最大文件名称大小为 255 个字符 — 而且它不支持索引节点(包括数据修改时间标记)。Ext2fs 做得更好;它的优点是:
Ext2fs 支持达 4 TB 的内存。 
Ext2fs 文件名称最长可以到 1012 个字符。 
当创建文件系统时,管理员可以选择逻辑块的大小(通常大小可选择 1024、2048 和 4096 字节)。 
Ext2fs 了实现快速符号链接:不需要为此目的而分配数据块,并且将目标名称直接存储在索引节点(inode)表中。这使性能有所提高,特别是在速度上。
 
因为 Ext2 文件系统的稳定性、可靠性和健壮性,所以几乎在所有基于 Linux 的系统(包括台式机、服务器和工作站 — 并且甚至一些嵌入式设备)上都使用 Ext2 文件系统。然而,当在嵌入式设备中使用 Ext2fs 时,它有一些缺点:
Ext2fs 是为象 IDE 设备那样的块设备设计的,这些设备的逻辑块大小是 512 字节,1 K 字节等这样的倍数。这不太适合于扇区大小因设备不同而不同的闪存设备。 
Ext2 文件系统没有提供对基于扇区的擦除/写操作的良好管理。在 Ext2fs 中,为了在一个扇区中擦除单个字节,必须将整个扇区复制到 RAM,然后擦除,然后重写入。考虑到闪存设备具有有限的擦除寿命(大约能进行 100,000 次擦除),在此之后就不能使用它们,所以这不是一个特别好的方法。 
在出现电源故障时,Ext2fs 不是防崩溃的。 
Ext2 文件系统不支持损耗平衡,因此缩短了扇区/闪存的寿命。(损耗平衡确保将地址范围的不同区域轮流用于写和/或擦除操作以延长闪存设备的寿命。) 
Ext2fs 没有特别完美的扇区管理,这使设计块驱动程序十分困难。
由于这些原因,通常相对于 Ext2fs,在嵌入式环境中使用 MTD/JFFS2 组合是更好的选择。
用 Ramdisk 挂装 Ext2fs 
通过使用 Ramdisk 的概念,可以在嵌入式设备中创建并挂装 Ext2 文件系统(以及用于这一目的的任何文件系统)。
清单 6. 创建一个简单的基于 Ext2fs 的 Ramdisk  mke2fs -vm0 /dev/ram 4096
  mount -t ext2 /dev/ram /mnt
  cd /mnt
  cp /bin, /sbin, /etc, /dev ... files in mnt
  cd ../
  umount /mnt
  dd if=/dev/ram bs=1k count=4096 of=ext2ramdisk
mke2fs 是用于在任何设备上创建 ext2 文件系统的实用程序 — 它创建超级块、索引节点以及索引节点表等等。
在上面的用法中,/dev/ram 是上面构建有 4096 个块的 ext2 文件系统的设备。然后,将这个设备(/dev/ram)挂装在名为 /mnt 的临时目录上并且复制所有必需的文件。一旦复制完这些文件,就卸装这个文件系统并且设备(/dev/ram)的内容被转储到一个文件(ext2ramdisk)中,它就是所需的 Ramdisk(Ext2 文件系统)。
上面的顺序创建了一个 4 MB 的 Ramdisk,并用必需的文件实用程序来填充它。
一些要包含在 Ramdisk 中的重要目录是:
/bin — 保存大多数象 init、busybox、shell、文件管理实用程序等二进制文件。 
/dev — 包含用在设备中的所有设备节点 
/etc — 包含系统的所有配置文件 
/lib — 包含所有必需的库,如 libc、libdl 等
1楼 0 0 回复
总共 , 当前 /