在十几年前,很多公司的电源测试标准中都有明确的规定,要求使用1:1 探头进行测量。因为这种探头不会损失的测量档位,比如原来最小档位是2mv/div,使用1:1探头就仍然可以通过这个档位测量纹波,即可以准确测量出10mv以内的纹波。但是由于这种探头的带宽只能做到6MHz左右,所以随着开关电源频率的提升,这种探头便不再适合使用。
目前常用的电源测量探头是10:1无源探头、100:1无源探头、高压差分探头。探头的选择上首先要考虑电压范围,被测电压不要超出探头允许的范围。比如说一般的10:1的无源探头,其低频耐压值是300VRMS,且随着频率的升高而降低。如图1所示。使用之前要测量信号的电压范围在此范围内。否者将无法进行正确的测量。
图1 10:1无源探头输入额定电压曲线
除此之外,还需要考虑探头衰减比对底噪的放大,从而判断信号的真实有效部分。采用探头测量时的示意图如图2所示,其中Gn1是虚拟的一个噪声源,表示示波器的本低噪声,而Gn2表示探头的本底噪声。由于信号经过了探头的衰减,为了还原真实信号的大小,示波器内部会对信号再进一步放大,而此时Gn1和Gn2也就跟着被放大,其放大倍数就是衰减比的倒数。所以衰减倍数越大,其测量系统的本底噪声也就被放大的越多。
图2 底噪放大示意图
例如使用500:1高压差分探头进行测量,示波器本底噪声是1mv,探头噪声为为1mv,这样累加噪声是2mv,再经过500倍的放大,其本底噪声就达到了1V。此时就需要考虑,1V的噪声是否在允许范围内。如果您的被测系统纹波本身也就只有1V或者更小,那1V的噪声显然是不允许的。
接地方式的选择
传统的使用习惯上,示波器的接地方式就是那根长长的接地夹线。如图3所示,这种接地方式,确实是一种简单方便的接地方式,但是却并不是一种严谨的、准确的接地方式。
图3 接地夹线示意图
由于地夹线比较长,其会形成一个寄生电感Lgnd,随着夹线的增长,这个电感也会增大,而这个回路电感会和示波器探头的输入电容Cin产生谐振。这就导致示波器的幅频特性变得不平坦,导致测量不准确。其等效电路如图4所示:
图4 接地夹线等效电路图
但是这还不是接地夹线最致命的。开关电源,随着开关管的开合,不仅仅产生了电源纹波,同时也产生了很多电磁干扰,通过空间进行辐射,而这部分辐射就会被接地夹线与探头形成的线圈给接收到,再加上示波器是高阻输入的,就导致这部分信号对测量的干扰非常可观。电磁干扰虽然也可以说是电源的一项参数,但是这部分信号是无法通过示波器探头来进行准确测量的,测量出来的值是毫无意义的。
图5 电磁辐射示意图
因为以上两点,所以在测试电源纹波时,是不应该使用接地夹线的,而应该使用接地弹簧。如图6所示,这样既降低了环路电感从而保证了较好的幅频特性,又降低了电磁辐射的引入。
图6 接地弹簧示意图
如果是使用的高压差分探头,则应该将两根输入线双绞在一起,如图7所示,用以降低环路面积。
图7 高压差分探头输入线双绞示意图