第五章 无功补偿
第5.0.1条 在用电单位中,大量的用电设备是异步电动机,电力变压器、电阻炉、电弧炉、照明等,前两项用电设备在电网中的滞后无功功率的比重最大,有的可达全厂负荷的80%,甚至更大。因此在设计中正确选用电动机、变压器等容量,可以提高负荷率,对提高自然或率因数具有重要意义。
用电设备中的电弧炉、矿热炉、电渣重熔炉等短网流过的电流很大,而且容易产生很大的涡流损失,因此在布置和安装上采取适当措施减少电抗,可提高自然功率因数。在一般工业企业与民用建筑中,线路的感抗也占一定的比重,设法降低线路损耗,也是提高自然功率因数的一个重要环节。
此外,在工艺条件许可时,采用同步电动机超前运行,选用带有自动空载切除装置的电焊机和其它间隙工作制的生产设备,均可提高用电单位的自然功率因数。目前国内带有自动空载切除装置的用电设备还不多,虽然有些厂家生产附加的空载切除装置,往往由于使用不便等原因难以坚持使用,从节能和提高自然功率因数的条件出发,对于间歇制工作的生产设备应大量生产内藏式空载切除装置。
第5.0.2条 当采取第5.0.1条的各种措施进行提高自然功率因数后,尚不能达到合理运行的要求时,应采用人工补偿无功功率。
人工补偿无功功率,经常采用两种方法,一种是同步电动机超前运行,一种是采用电容器补偿。同步电动机价格贵,操作控制复杂,本身损耗也较大,不仅采用小容量同步电动机不经济,即使容量较大而且长期连续运行的同步电动机也正为异步电动机加电容器补偿所代替,同时操作工人往往担心同步电动机超前运行会增加维修工作量,经常将设计中的超前运行同步电动机作滞后运行,丧失了采用同步电动机的优点,因此,除上述工艺条件适当者外,不宜选用同步电动机。当然,通过技术经济比较,当采用同步电动机作为无功补偿装置确实合理时,也可采用同步电动机作为无功补偿装置。
工业与民用建筑中所用的并联电容器价格便宜,便于安装,维修工作量、损耗都比较小,可以制成各种容量,分组容易,扩建方便,既能满足目前运行要求,又能避免由于考虑将来的发展使目前装设的容量过大,因此应采用并联电力电容器作为人工补偿的主要设备。
第5.0.3条 为了尽量减少线损和电压降,宜采用就地平衡无功功率的原则来装设电容器。根据1983年《全国电力设备价格汇编》,高、低压电容器每千乏的售价基本相同。目前国内生产的金属喷涂聚丙烯薄膜绕制的干式电容器,在真空条件下加工,用热固性树脂密封,电气性能得到保证,电容器元件间装有导热板,散热条件好;元件周围用不燃、惰性无毒的蛭石颗粒填满,可吸收热能,防止起火和爆炸,装有放电电阻,断电后lmin内,端电压下降到50V以下。包括放电电阻的总损耗小于0.5W/kvar,有自愈性,体积小,重量轻,可垂直或水平安装,允许300倍额定电流的涌流1000次。因此在低压侧完全由低压电容器补偿是比较合理的,为了防止低压部分过补偿产生的不良效果,因此高压部分由高压电容器补偿。
并联电容器单独就地补偿就是将电容器安装在电气设备的附近,可以最大限度地减少线损和释放系统容量,在某些情况下还可以缩小馈电线路的截面积,减少有色金属消耗,但电容器的利用率往往不高,初次投资及维护费用增加。从提高电容器的利用率和避免遭致损坏的观点出发,宜用于以下范围:
1.选择长期运行的电气设备,为其配置单独补偿电容器。由于电气设备长期运行,电容器的利用率高,在其运行时,电容器正好接在线路上,如压缩机、风机、水泵等。
2.首先在容量较大的用电设备上装设单独补偿电容器,对于大容量的电气设备,电容器容易获得比较良好的效益,而且相对地减小涌流。
由于每千瓦电容器箱的价格随电容器容量的增加而减少,也就是电容器容量小时,其电容器箱的价格相对比较大,因此目前最好只考虑5Kvar及以上的电容器进行单独就地补偿,这样可以完全采用干式低压电容器。目前生产的干式低压电容器每个单元内装有限流线圈,可有效地限制涌流;同时每个单元还装有过热保护装置,当电容器温升超过额定值时,能自动地将电容器从线路中切除;此外每个单元内均装有放电电阻,当电容器从电源断开后,可在规定时间内,将电容器的残压降到安全值以内。由于这种电容器有比较多的功能,电容器箱内不需再增加元件,简化了线路,提高了可靠性。
由于基本无功功率相当稳定,为便于维护管理,宜在配、变电所内集中补偿。
低压电容器分散在车间内可以补偿线路无功功率,相应地减少电能损耗及电压损失。国内调查结果说明,电容器运行的损耗率只有0.25%,但不适用于环境恶劣的车间。因此在正常环境的车间内,在进行就地补偿以后,宜在无功功率不大且相对集中的地方分散补偿。
第5.0.4条 对于工业企业中的工厂或车间以及整幛的民用建筑物或其一层需要进行无功补偿时,宜根据负荷运行情况绘制无功功率曲线,根据该曲线及无功补偿要求,决定补偿容量。国内外类似工厂和高层及民用建筑都有负荷要求,决定补偿容量。国内外类似工厂和高层及民用建筑都有负荷运行曲线,可利用这些类似建筑的资料计算无功补偿的容量。
当无法取得无功功率曲线时,可采用下列常用的公式计算无功补偿容量。
第5.0.5条 高压电容器由于专用的断路器和自动投切装置尚未形成系列,虽然也有些产品,但质量还不稳定;低压电容器自动投切装置的产品品种甚多,但能坚持使用者不多,固然也有管理不善的问题,但质量不够理想也是主要原因。鉴于这种情况,凡可不用自动补偿或采用自动补偿效果不大的地方均不宜装设自动无功补偿装置。这条所列的基本无功功率是当用电设备设入运行时所需的最小无功功率,常年的稳定无功功率及在运是当用电设备投入运行时所需的最小无功功率,常年的稳定无功功率及在运行期间恒定的无功功率均不需自动补偿。对于投切次数甚少的电容器组,按我国并联电容器国家标准(JB1629—75,1983)A.5.3条规定的次数为每年允许不超过1000次,在这些情况下都宜采用手动投切的无功功率补偿装置。常年运行的高压电动机,投切次数很少,也可用手动投切。
第5.0.6条 因为过补偿要罚款,如果无功功率不稳定,且变化较大,采用自动投切可获得合理的经济效果时,宜装设无功自动补偿装置。
电网上装设电容器后,电压升高率按下式计算:
装有电容器的电网,对于有些对电压敏感的用电设备,在轻载时由于电容器的作用,线路电压往往升得更高,会造成这种用电设备(如灯泡)的损坏或严重影响寿命及使用效能,当能避免设备损坏,且经过经济比较,认为合理时,宜装设无功自动补偿装置。
为了满足电压偏差允许值的要求,在各种负荷下有不同的无功功率调整值,如果在各种运行状态下都需要不超过电压偏差允许值,只有采用自动补偿才能满足时,就必须采用无功自动补偿装置。
第5.0.7条 由于高压无功自动补偿装置对切换元件的要求比较高,且价格较高,检修维护也较困难,因此当补偿效果相同时,宜优先采用低压无功自动补偿装置。
第5.0.8条 根据我国现有设备情况及运行经验,当采用自动无功补偿装置时,宜根据本条提出的三种方式加以选用。
电网的电压水平与无功功率有着密切的关系,采用调压减少电压偏差,必须有足够的可调整的无功功率,否则将导致电网其它部分电压下降。且在工业企业与民用建筑中造成电容器端子电压升高的原因很多,如电容器装置接入电网后引起的电网电压升高,轻负荷引起的电压升高,系统电压波动所引起的电压升高。近年来,由于采用大容量的整流装置日益增加,高次谐波引起的电网电压升高。根据IEC标准《电力电容器》第15.1条规定:“电容器适合于端子间电压有效值升到不超过1.10倍额定电压值下连续运行”。国内多数制造厂规定:电容器只允许在不超过1.05倍额定电压下长期运行,只能1.1倍额定电压(瞬时过电压除外)下短期运行(一昼夜)。当电网电压过高时,将引起电容器内部有功功率损耗显著增加,使电容器介质遭受热力击穿,影响其使用寿命。另外电网电压过高时,除了电容器过载外,还会引起邻近电器的铁芯磁通过饱和,从而产生高次谐波对电容器更不利。有些用电设备,对电压波动很敏感,例如白炽灯,当电压升高5%时,寿命将缩短50%,工业企业中车间内白炽灯由于电压升高烧毁灯泡的事已屡见不鲜。此外,由于工艺需要,必须减少电压偏差值的,也需要按电压参数调节无功功率。如供电变压器已采用自动电压调节,则不能再采用以电压为主参数的自动无功补偿装置,避免造成振荡。
如果以节能为主,首要的还是节约电费,应以补偿无功功率参数来调节。目前按功率因数补偿的甚多,但根据电网运行经验,功率因数只反应相位,不反应无功功率,而且目前大部分自动补偿装置的信号只取一相参数,但功率因数值仅在三相负荷平衡时才准确,负荷不平衡度越大,误差也越大,因此只有在三相负荷平衡时才可采用功率因数参数调节。
对于按时间为基准,有一定变化规律的无功功率,可以根据这种变化规律进行调节,线路简单、价格便宜,根据运行经验,效果良好。
第5.0.9条 在工业企业中,电容器的装接容量有的也比较大,例如某重型机器厂中电容器的装接容量为2万多kvar,某煤气厂所装的电容器也有8000多kvar,其它一些大型的冶金化工、机械等行业都装有较多容量的电容器,因此应根据补偿无功和调节电压的需要分组投切。
由于目前工业企业中采用大型整流及变流装置的设备越业越多,以致造成电网中的高次谐波的百分比很高。据上海某地区电网的测量,其中高次谐波的成分已超过目前国内《电力系统谐波管理暂行规定》中所列的允许值,当分组投切大容量电容器组时,由于其容抗的变化范围较大,如果系统的谐波感抗与系统的谐波容抗相匹配,就会发生高次谐波揩振,造成过电压和过电流,严重危及系统及设备的安全运行,所以必须避免。
根据《并联电容器》国家标准第5.3条规定:“电容器应能在有效值为1.3倍额定电流下运行”。考虑到电容器参数的分散性,其配套设备的额定电流应大于电容器组额定电流的1.35倍。由于投入电容器时合闸涌流甚大,而且容量愈小,相对的涌流倍数愈大,以1000kVA变压器低压侧安装的电容器组为例,仅投切一台12kvar电容器则涌流可达其额定电流的56.4倍,如投切一组300kvar电容器,则涌流仅为其额定电流的12.4倍。所以电容器在分组时,应考虑配套设备,如接触器或自动开关在开断电容器时产生重击穿过电压及电孤重击穿现象。
根据目前国内设备制造情况,对于10kV电容器,断路器允许的配置容量为10000kvar,氧化锌避雷器允许的配置容量为8000kvar,这些是防止电容器爆炸的最大允许电容器并联容量,但根据一些设计重工业和大型化工企业的设计院的习惯做法,10kV电容器的分组容量一般为2000~3000kvar。为了节约设备、方便操作,宜减少分组,加大分组容量。
根据调查了解,无载调压分接开关的调压范围是额定电压的2.5%或5%,有载调压开关的调压范围为额定电压的1.25%或2.5%,所以当用电容器组的搞切来调节母线电压时,调节范围宜限制在额定电压的2.5%以内,但对经常投运而很少切除的电容器组以及从经济性出发考虑的电容器组,可允许超过这个范围,因此本条文仅说明“应满足电压偏差的允许范围”,未提出具体电压偏差值。
第5.0.10条 当对电动机进行就地补偿时,应选用长期连续运行且容量较大的电动机配用电容器。电容器额定电流的选择,按照IEC出版物831电容器篇中的安装使用条件:“为了防止电动机在电源切断后继续运行时,由于电容器产生自激可能转为发电状态,以致造成过电压,以不超过电动机励磁电流的90%为宜”。
吊车或电梯等在重物下降时,电动机运行于第四象限,为避免过电压,不宜单独用电容器补偿。对于多速电动机,如不停电进行变压及变速,也容易产生过电压,也不宜单独用电容器补偿。如对这些用电设备需要采用电容器单独补偿,应为电容器单独设置控制设备,操作时先停电再进行切换,避免产生过电压。
当电容器装在电动机控制设备的负荷侧时,流过过电流装置的电流小于电机本身的电流,电流减少的百分数近似值可用下式计算:
高压电容器回路中,S比较大,根据计算,Is往往大于控制开关所容许的投入电流值,因此宜采用串联电抗器加以限制。
在低压电容器回路中,首先宜在合理范围内(见第5.0.9条)加大投切的电容器容量,如计算而得的Is尚大于控制电器的投入电流,则宜采用专用电容器投切接触器。国内目前生产的有CJR及CJ16型接触器,前者在三相中每相均串有1.5Ω电阻,后者在三相中的两相内串有1.5Ω电阻,两者投入电流均可达额定电流的20倍,待电容器充电到80%左右容量时,才将电阻短接,电容器才正式投入运行。根据计算和试验,这类接触器能符合投入涌流的要求。
由于电容器回路是一个LC电路,对某些谐波容易产生谐振,造成谐波放大,使电流增加和电压升高,如串联一定感抗值的电抗器可以避免谐振,如以串入电抗器的百分比为K,当电网中5次谐波电压较高,而3次谐波电压不太高时,K宜采用4.5%;如3次谐波电压较高时,K宜采用12%,当电网中谐波电压不大时,K宜采用0.5%。