您的位置:控制工程论坛网论坛 » 电机与运动控制 » 变频调速器的基础知识

xiao_xiao1

xiao_xiao1   |   当前状态:离线

总积分:9568  2024年可用积分:0

注册时间: 2008-03-21

最后登录时间: 2012-03-20

空间 发短消息加为好友

变频调速器的基础知识

xiao_xiao1  发表于 2009/4/1 12:29:00      1031 查看 1 回复  [上一主题]  [下一主题]

手机阅读

变频调速器的基础知识 

交流变频调速技术是现代电力传动技术重要发展方向,随着电力电子技术,微电子技术和现代控制理论在交流调速系统中的应用,变频交流调速已逐渐取代了过去的滑差调速,变极调速,直流调速等调速系统,越来越广泛的应用于工业生产和日常生活的许多领域。但由于受到使用环境,使用年限以及人为操作上的一些因素,变频器的使用寿命大为降低,同时在使用中也出现了各种各样的故障。
1 .变频器的静态测试结果来判断故障
首先可以对变频器做一个静态的测试,一般通用型变频器大致包括以下几个部分(1)整流电路;(2)直流中间电路;(3)逆变电路;(4)控制电路。
静态测试主要是对整流电路,直流中间电路和逆变电路部分的大功率晶体管(功率模块)的一个测试,工具主要是万用表。 整流电路主要是对整流二极管的一个正反向的测试来判断它的好坏,当然我们还可以用耐压表来测试。 直流中间回路主要是对滤波电容的容量及耐压的测量,我们也可以观察电容上的安全阀是否爆开,有否漏液现象等
来判断它的好坏.功率模块的好坏判断主要是对功率模块内的续流二极管的判断。对于IGBT模块我们还需判断在有触发电压的情况下能否导通和关断。
2.通过变频器的显示来判断故障点的所在
(1) OC.过电流故障 这可能是变频器里面最常见的故障了。首先要排除由于参数问题而导致的故障。例如电流限制,加速时间过短都有可能导致过电流的产生。然后我们就必须判断是否电流检测电路出问题了。以FVR075G7S-4EX为例:我们有时会看到FVR075G7S-4EX在不接电机运行的时候面板也会有电流显示。电流来自于哪里呢?这时就要测试一下它的3个霍尔传感器,为确定那一相传感器损坏,我们可以每拆一相传感器的时候开一次机,看是否会有过流显示,经过这样试验后基本能排除OC故障。
(2) OV.过电压故障 首先要排除由于参数问题而导致的故障。例如减速时间过短,以及由于再生负载而导致的过压等,然后我们可以看一下输入侧电压是否有问题,最后我们可以看一下电压检测电路是否出现了故障,一般的电压检测电路的电压采样点,都是中间直流回路的电压。我们以三肯SVF303为例,它由直流回路取样后(530V左右的直流)通过阻值较大电阻降压后再由光耦进行隔离,当电压超过一定值时,显示“5”过压(此机器为数码管显示)我们可以看一下电阻是否氧化变值,光耦是否有短路现象等。
(3) UV.欠电压 我们首先可以看一下输入侧电压是否有问题,然后看一下电压检测电路,故障判断和过压相同。
4) FU.快速熔断器故障 在现行推出的变频器大多推出了快熔故障检测功能。(特别是大功率变频器)以LG030IH-4变频器为例。它主要是对快熔前面后面的电压进行采样检测,当快熔损坏以后必然会出现快熔一端电压没有,此时隔离光耦动作,出现FU报警。更换快熔就因该能解决问题。特别应该注意的是在更换快熔前必须判断主回路是否有问题。
(5) OH.过热 主要引起原因变频器内部散热不好。我们可以检查散热风扇及通风通道。
(6) SC.短路故障 我们可以检测一下变频器内部是否有短路现象。检测一下内部线路,可能不一定有短路现象,此时我们可以检测一下功率模块有可能出现了故障,在驱动电路正常的情况下,更换功率模块,应该能修复机器。
变频器故障多种多样,第一炼钢车间的维修工接触较晚,而且对变频器的基础知识知之甚少,我们只能在实践中不断总结,摸索出一套快速有效处理变频器故障的办法。
一. 变频器主要原理基本知识 。
三相380V电网电压从变频器的L1, L2, L3输入端输入后,首先要经过变频器的整流桥整流,后经过电容的滤波,输出一大约530V左右的直流电压(这530V也就是我们常用来判断变频器整流部分好坏的最常测试点,当然整流桥最初是要经过断电测试的)然后经过逆变电路,通过控制逆变电路的通断来输出我们想要的合适频率的电压(变频器能变频最主要的就是控制逆变电路的关断来控制输出频率),变频器故障有无数种,好在现在变频器都趋于智能化,一般的故障它自己都能检测,并在控制面版上显示出其代码,用户只需查一下用户手册就能初步判断其故障原因。但有时,变频器在运行中或启动时或加负载时,突然指示灯不亮,风扇不转,无输出。这时我们初学者就不知该怎办了。其实很简单的,我们只要把变频器的电源断了。断电测试一下它的整流部分与逆变部分,大多情况下就能知其故障所在了。这里有一点要千万注意,断电后不能马上测量,因变频器里有大电容存有几百伏的高压,一定要等上十几分钟再测,这一点千万要注意。 变频器上电前整流桥及逆变电路的测试。具体测量方法如下:
找到变频器直流输出端的“+”与“-”,然后将万用表调到测量二极管档,黑表笔接“+”,红表笔分别接变频器的输入端L1, L2, L3端,整流桥的上半桥若是完好,万用表应显示0.3……的压降,若损坏则万用表显示“1”过量程。相反将红表笔接“-”黑表笔分别接L1, L2, L3端应得到上述相同结果,若出现“1”则证明整流桥损坏。 然后测试其逆变电路,方法如下:将万用表调到电阻×10档将黑表笔接“+”红表笔接变频器的输出端U, V, W应有几十欧的阻值,反向应该无穷大。反之将红表笔接到“-”重复上述过程,应得到同样结果。  这样经过测量在判断变频器的整流部分与逆变部分完好时,上电测量其直流输出端看是否有大约530V高压,注意有时万用表显示几十伏大家以为整流电路工作了,其实它并没工作,它正常工作会输出530V左右的高压,几十伏的电压是变频器内部感应出来的。若没530V左右高压这时往往是电源版有问题。有的变频器就是由于电源版的一小贴片电阻被烧毁,导致电源板不工作,以致使变频器无显示无输出,风扇不转,指示灯不亮。 这样就可以初步判断出变频器是哪部分出现了故障,然后拆机维修时就可以重点测试怀疑故障部分。
二. 技术基础
(一) 基本术语篇
1, Electronic Line Shafting---ELS,许多工业生产线都由多台机器组成,各轴之间具有运动关系。过去是使用机械机构连接各轴,如果使用电子方式连接各轴,各州各有其驱动马达,则称为“Electronic Line Shafting”(ELS)。2, Auto Tuning(自动调校), 常见于磁束向量型变频器的一种技术,能自动监测(找出)马达的参数,如转差频率/场电流/转矩电流/定子阻抗/转子阻抗/定子感抗/转子感抗等.有了这些参数后才能作【专据估算】及【转差(滑差)补偿】.也因为此技术,在无编码器的运转下仍能获得良好的运转精度.
3, 无编码器运转,在速度控制上,与旧式variable frenquency变频器的开回路比较,磁束向量型变频器内部由速度观测计算功能达成闭回路.马达侧不用装编码器也能达到良好的速度精度.无编码器运转有如下好处:1),配线精省;2),不必担心RF杂讯对编码器低电压信号的影响;3),在多震动的场合不用担心编码器的高故障率.
4, 变频器的矢量控制 在AC马达中,转子由定子绕组感应电流产生磁场.定子电流含两部分.一部分影响磁场,另一部分影响马达输出转矩.要使用AC马达在需要速度与转矩控制的场合,必须能够把影响转矩的电流分离控制,而磁束矢量控制就能够分离这两部分进行独立控制.(具有大小及方向的物理量称为矢量)
5, Field WeakeningField Weakening线路可用以减弱马达的场电流,改变与磁场的平衡关系,使马达高于基本转速运转
6, 定转矩应用 所需转矩大小不因速度而变的场合,常用到【定转矩应用】.如传送带等负载.【定转矩应用】通常需要较大的起动转矩.【定转矩应用】在低速运转时易有马达发热问题,解决的方法:最好(1)加大马达功率;(2)使用装有定速冷却的变频器专用马达(即马达的冷却方式为强制风冷).
7, 变转矩应用 多见于离心式负载,例如泵/风机/风扇等,其使用变频器的目的一般为节能.比如当风扇以50%转速运转时,其所需转矩小于全速运转所需.可变转矩变频器能够仅给与马达所需转矩,达到节能效果.次应用中短暂的巅峰负载通常无需给与马达额外的能量.故变转矩变频器的过载能力可以适用于大部分用途.
*定转矩变频器的过载(电流)能力须为额定值150%/1minute,而可变转矩变频器所需过载(电流)能力仅需额定值120%/1minute.因为离心式机械用途中很少会超出额定电流.另外,变转矩用途所需起动转矩也较定转矩用途小.
8, 变频器专用马达
所谓【Inverter-duty Motor】,主要特征如下:1),分离式它力通风(它力风冷);2),10Hz-60Hz为定转矩输出;3),高起动转矩;4),低噪音;5),马达装有编码器.*但并非所有称之为变频器专用马达的马达都具有上列特征.
9,关于调速:
1)调速:根据工况需要调整设备运行速度,以达到节能降耗、减少磨损、按需生产等目的。2)直流调速(DC Controler/motor):由直流控制器调节直流电机以达到调整速度的目的。3)交流变频调速(AC inverter/motor):由变频器输出频率变化的三相交流电流从而控制交流电机的转速。4)矢量变频调速(AC vector inverter):通过复杂的计算变换,使交流变频器按照直流电机的控制方式去控制交流电机,从而达到精确速度控制、转矩控制、提高输出扭矩等特性。5)伺服控制系统(Servo control system):在运动系统中引入速度反馈或位置反馈元件,通过负反馈的作用达到极其精密的的速度控制、定位控制以及高动态响应。
10,几个常见工业元件:
1)测速发电机(Tacho-generator):一种转速测量元件,有交流、直流之分。2)旋转变压器(Resolver):一种经济、准确地转速和角位移测量元件。
3)光电编码器(Encoder):一种精密的角位移、转速测量元件,适合在位置控制系统中作为反馈元件。
4)PLC:工业用计算、控制装置,实现逻辑、时序、计算等控制功能,一般作为整个自动化控制系统的上位主机。
5)HMI(Human-Machine Interface):人-机界面。
6)现场总线(Field-Bus System):应用于工业控制现场的串行通讯总线系统,大幅度降低接线成本,提高控制的抗干扰能力。
7)分布式控制(Distributed control):区别于传统的集中式控制,强调各个节点设备的智能化,一般由现场总线系统将各子设备连接起来。极大地提高系统应用的灵活性、可靠性,降低上位机的运算负担。
11,关于电机的三个术语:1)防护等级(Protection Code):(IP**)考察一个设备防止异物进入和防水的能力,使IEC标准之一。其两个数字分别代表防异物和防水的能力,数值越高表明可以防止更细小的物体进入以及经受更强烈的水流冲击。一般为IP54(防尘,防泼洒水滴)以上防护等级的设备可以直接应用于露天。2)绝缘等级(Insulation Grade):考察一个电气设备(一般针对电机)在保证良好绝缘特性的前提下所能承受的极限温升能力,是IEC标准之一。一般有B级(85度)、F级(105度)、H级(125度)。
3)工作制。
三.知识入门
1、什么是变频器?
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
2、PWM和PAM的不同点是什么?
PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变脉冲列的脉冲宽度,以调节输出量和波形的一种调值方式。PAM是英文Pulse Amplitude Modulation(脉冲幅度调制)缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。
3、电压型与电流型有什么不同?
变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波石电感。
4、为什么变频器的电压与电流成比例的改变?
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。
5、电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加?
频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。
6、采用变频器运转时,电机的起动电流、起动转矩怎样?
采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。
7、V/f模式是什么意思?
频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。
8、按比例地改V和f时,电机的转矩如何变化?
频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法
9、在说明书上写着变速范围60~6Hz,即10:1,那么在6Hz以下就没有输出功率吗?
在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题。变频器实际输出频率(起动频率)根据机种为0.5~3Hz.
10、对于一般电机的组合是在60Hz以上也要求转矩一定,是否可以?
通常情况下时不可以的。在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在高速下要求相同转矩时,必须注意电机与变频器容量的选择
11、所谓开环是什么意思?
给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环”,不用PG运转的就叫作“开环”。通用变频器多为开环方式,也有的机种利用选件可进行PG反馈。
12、实际转速对于给定速度有偏差时如何办?
开环时,变频器即使输出给定频率,电机在带负载运行时,电机的转速在额定转差率的范围内(1%~5%)变动。对于要求调速精度比较高,即使负载变动也要求在近于给定速度下运转的场合,可采用具有PG反馈功能的变频器(选用件)。
13、如果用带有PG的电机,进行反馈后速度精度能提高吗?
具有PG反馈功能的变频器,精度有提高。但速度精度的植取决于PG本身的精度和变频器输出频率的分辨率。
14、失速防止功能是什么意思?
如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因流过过电流而跳闸,运转停止,这就叫作失速。为了防止失速使电机继续运转,就要检出电流的大小进行频率控制。当加速电流过大时适当放慢加速速率。减速时也是如此。两者结合起来就是失速功能。
15.变频器的散热
1). 如果要正确的使用变频器, 必须认真地考虑散热的问题.
变频器的故障率随温度升高而成指数的上升,使用寿命随温度升高而成指数的下降。环境温度升高10度,变频器平均使用寿命减半。在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响通常,变频器安装在控制柜中。我们要了解一台变频器的发热量大概是多少. 可以用以下公式估算:
发热量的近似值= 变频器容量(KW)×55 【W】
在这里, 如果变频器容量是以恒转矩负载为准的 (过流能力150% * 60s)  如果变频器带有直流电抗器或交流电抗器, 并且也在柜子里面, 这时发热量会更大一些。 电抗器安装在变频器侧面或测上方比较好。    这时可以用估算: 变频器容量(KW)×60 【W】  因为各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品.  注意: 如果有制动电阻的话,因为制动电阻的散热量很大,因此最好安装位置最好和变频器隔离开, 如装在柜子上面或旁边等。
2. )怎样降低控制柜内的发热量?
当变频器安装在控制机柜中时,要考虑变频器发热值的问题。根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有70%的发热量释放到控制机柜的外面。由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。这样效果也很好。
注意:变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的!
3. )关于冷却风扇 一般功率稍微大一点的变频器, 都带有冷却风扇。同时,也建议在控制柜上出风口安装冷却风扇。进风口要加滤网以防止灰尘进入控制柜。注意控制柜和变频器上的风扇都是要的,不能谁替代谁。
4.)其他关于散热的问题
1。 在海拔高于1000m的地方,因为空气密度降低,因此应加大柜子的冷却风量以改善冷却效果。理论上变频器也应考虑降容,每1000m降低5%。但由于实际上因为设计上变频器的负载能力和散热能力一般比实际使用的要大,所以也要看具体应用。 比方说在1500m的地方,但是周期性负载,如电梯,就不必要降容。
2。 开关频率:变频器的发热主要来自于IGBT, IGBT的发热有集中在开和关的瞬间。因此开关频率高时自然变频器的发热量就变大了。 有的厂家宣称降低开关频率可以扩容, 就是这个道理。
16.关于漏电流的问答  Q: 有那些漏电流的形式?  A: 有 2种:电机电缆对地漏电流和电缆   Q: 为什么会有漏电流的问题?  A: 不使用变频器时,漏电流一般较小。使用变频器时,因为逆变器的功率模块高速开关,输出电流中有高次谐波的存在。有因为电缆对地、电缆之间存在电感,因此产生了较大的漏电流(可达不用变频器时的10倍)。    Q: 漏电流和开关频率有和关系?  A: 开关频率越小,漏电流越小。   Q: 漏电流和电机功率的关系?  A: 功率越大,漏电流越大。    Q: 漏电流和接地的关系?  A: 无直接关系。但接地不好会增加触电的可能性。    Q: 漏电流对策有那些?  A: 降低开关频率,是电缆之间,电缆和地的距离增加,增加开关的漏电流设定水平等。    Q: 对变频器的漏电流水平可有什么规定?   A: 现在还没有。
17. 目前,变频交流调速已遍布冶金、电力、等各个领域。变频器是利用交流电动机的同步转速随电机电压频率变化而变化的特性而实现电动机调速运行的装置,其中,有几个参数的设定非常重要,将直接影响变频器的合理使用。
几个重要参数的设定
1 .V/f类型的选择 V/f类型的选择包括最高频率、基本频率和转矩类型等。
最高频率是变频器-电动机系统可以运行的最高频率。由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电定电压设定。转矩类型指的是负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的V/f类型图和负载的特点,选择其中的一种类型。我们根据电机的实际情况和实际要求,最高频率设定为83.4Hz,基本频率设定为工频50Hz。负载类型:50Hz以下为恒转矩负载,50~83.4Hz为恒功率负载。
2.如何调整启动转矩
调整启动转矩是为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产启动的要求。 在异步电机变频调速系统中,转矩的控制较复杂.在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持V/f为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。可是,漏阻抗的影响不仅与频率有关,还和电机电流的大小有关,准确补偿是很困难的。近年来国外开发了一些能自行补偿的变频器,但所需计算量大,硬件、软件都较复杂,因此一般变频器均由用户进行人工设定补偿。针对我们所使用的变频器,转矩提升量设定为1%~5%之间比较合适。
3. 如何设定加、减速时间 电机的运行方程式:
式中:Tt为电磁转矩;T1为负载转矩 电机加速度dw/dt取决于加速转矩(Tt,T1),而变频器在启、制动过程中的频率变化率则由用户设定。若电机转动惯量J、电机负载变化按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率能与电机转速变化率相协调。检查此项设定是否合理的方法是按经验选定加、减速时间设定。若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间;另一方面,加、减速时间不宜设定太长,时间太长将影响生产效率,特别是频繁启、制动时。我们将加速时间设定为15s,减速时间设定为5s。
4 .频率跨跳 V/f控制的变频器驱动异步电机时,在某些频率段。
电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护使得电机不能正常启动,在电机轻载或转动量较小时更为严重。因此变通变频器均备有频率跨跳功能,用户可以根据系统出现振荡的频率点,在V/f曲线上设置跨跳点及跨跳点宽度。当电机加速时可以自动跳过这些频率段,保证系统正常运行。
5 过负载率设置 该设置用于变频器和电动机过负载保护。
当变频器的输出电流大于过负载率设置值和电动机额定电流确定的OL设定值时,变频器则以反时限特性进行过负载保护(OL),过负载保护动作时变频器停止输出。 2.6 电机参数的输入 变频器的参数输入项目中有一些是电机基本参数的输入,如电机的功率、额定电压、额定电流、额定转速、极数等。这些参数的输入非常重要,将直接影响变频器中一些保护功能的正常发挥,一定要根据电机的实际参数正确输入,以确保变频器的正常使用。
四.变频器在调试与使用过程中经常遇到的问题
1.)其中过电压现象最为常见。 过电压产生后,变频器为了防止内部电路损坏,其过电压保护功能将动作,使变频器停止运行,导致设备无法正常工作。因此必须采取措施消除过电压,防止故障的发生。由于变频器与电机的应用场合不同,产生过电压的原因也不相同,所以应根据具体情况采取相应的对策。
2、)过电压的产生与再生制动所谓变频器的过电压,是指由于种种原因造成的变频器电压超过额定电压,集中表现在变频器直流母线的直流电压上。正常工作时,变频器直流部电压为三相全波整流后的平均值。
若以380V线电压计算,则平均直流电压Ud=1.35U线=513V。在过电压发生时,直流母线上的储能电容将被充电,当电压上升至700V左右时,(因机型而异)变频器过电压保护动作。造成过电压的原因主要有两种:电源过电压和再生过电压。
电源过电压是指因电源电压过高而使直流母线电压超过额定值。而现在大部分变频器的输入电压最高可达460V,因此,电源引起的过电压极为少见。本文主要讨论的问题是再生过电压。产生再生过电压主要有以下原因:当大GD2(飞轮力矩)负载减速时变频器减速时间设定过短;电机受外力影响(风机、牵伸机)或位能负载(电梯、起重机)下放。由于这些原因,使电机实际转速高于变频器的指令转速,也就是说,电机转子转速超过了同步转速,这时电机的转差率为负,转子绕组切割旋转磁场的方向与电动机状态时相反,其产生的电磁转矩为阻碍旋转方向的制动转矩。所以电动机实际上处于发电状态,负载的动能被“再生”成为电能。再生能量经逆变部续流二极管对变频器直流储能电容器充电,使直流母线电压上升,这就是再生过电压。因再生过电压的过程中产生的转矩与原转矩相反,为制动转矩,因此再生过电压的过程也就是再生制动的过程。换句话说,消除了再生能量,也就提高了制动转矩。如果再生能量不大,因变频器与电机本身具有20%的再生制动能力,这部分电能将被变频器及电机消耗掉。若这部分能量超过了变频器与电机的消耗能力,直流回路的电容将被过充电,变频器的过电压保护功能动作,使运行停止。为避免这种情况的发生,必须将这部分能量及时的处理掉,同时也提高了制动转矩,这就是再生制动的目的。
3、)过电压的防止措施: 由于过电压产生的原因不同,因而采取的对策也不相同。对于在停车过程中产生的过电压现象,如果对停车时间或位置无特殊要求,那么可以采用延长变频器减速时间或自由停车的方法来解决。所谓自由停车即变频器将主开关器件断开,让电机自由滑行停止。如果对停车时间或停车位置有一定的要求,那么可以采用直流制动(DC制动)功能。直流制动功能是将电机减速到一定频率后,在电机定子绕组中通入直流电,形成一个静止的磁场。电机转子绕组切割这个磁场而产生一个制动转矩,使负载的动能变成电能以热量的形式消耗于电机转子回路中,因此这种制动又称作能耗制动。在直流制动的过程中实际上包含了再生制动与能耗制动两个过程。这种制动方法效率仅为再生制动的30-60%,制动转矩较小。由于将能量消耗于电机中会使电机过热,所以制动时间不宜过长。而且直流制动开始频率,制动时间及制动电压的大小均为人工设定,不能根据再生电压的高低自动调节,因而直流制动不能用于正常运行中产生的过电压,只能用于停车时的制动。对于减速(从高速转为低速,但不停车)时因负载的GD2(飞轮转矩)过大而产生的过电压,可以采取适当延长减速时间的方法来解决。其实这种方法也是利用再生制动原理,延长减速时间只是控制负载的再生电压对变频器的充电速度,使变频器本身的20%的再生制动能力得到合理利用而已。至于那些由于外力的作用(包括位能下放)而使电机处于再生状态的负载,因其正常运行于制动状态,再生能量过高无法由变频器本身消耗掉,因此不可能采用直流制动或延长减速时间的方法。再生制动与直流制动相比,具有较高的制动转矩,而且制动转矩的大小可以跟据负载所需的制动力矩(即再生能量的高低)由变频器的制动单元自动控制。因此再生制动最适用于在正常工作过程中为负载提供制动转矩。
1楼 0 0 回复
  • bbs1234567

    bbs1234567   |   当前状态:在线

    总积分:130  2024年可用积分:0

    注册时间: 2012-09-26

    最后登录时间: 2013-01-28

    空间 发短消息加为好友

    bbs1234567   发表于 2012/9/26 15:07:11

    变频器有的时候是由于电源版的一小贴片电阻被烧毁,导致电源板不工作的。
    2楼 回复本楼

    引用 bbs1234567 2012/9/26 15:07:11 发表于2楼的内容

总共 , 当前 /